Прогнозування параметрів в оптимальній робочій точці для стиснення із втратами зображень із шумом на основі BPG
DOI:
https://doi.org/10.36023/ujrs.2022.9.2.212Ключові слова:
стиснення зображення з втратами, оптимальна точка роботи, якісне прогнозування, шум, дискретне косинусне перетворенняАнотація
Стиснення із втратами зображень, спотворених шумом, має кілька особливостей. По-перше, спостерігається специфічний ефект фільтрації шуму. По-друге, може спостерігатися оптимальна робоча точка (OРТ), тобто може існувати таке значення параметра кодеру (наприклад, кроку квантування), що якість стисненого зображення, розрахованого по відношенню до безшумного зображення, може бути кращою порівняно з якістю стисненого (вихідного зашумленого) зображення. Якщо OРТ є, то варто стиснути це зображення в OРТ, якщо ні, то розумні інші рекомендації щодо настроювання параметрів кодера. Оскільки безшумне зображення на практиці недоступне, визначити, чи існує OРТ і яке в ньому якість зображення, неможливо. У цій статті ми показуємо, що існування OРТ для кількох метрик якості може бути досить легко і швидко прогнозовано для зображень у градаціях сірого, спотворених адитивним білим гаусовим шумом та стиснутим кодером better portable graphics (BPG). Такий прогноз ґрунтується на аналізі статистики коефіцієнтів дискретного косинусного перетворення (ДКП), розрахованих для обмеженої кількості блоків 8x8 пікселів. Діаграма розсіювання покращення (погіршення) метрики в залежності від цих статистичних даних отримується заздалегідь, і виконується підбір прогнозної кривої. Наведено рекомендації щодо настроювання параметрів кодера для випадків відсутності OРТ.
Посилання
Abramov S., Krivenko S., Roenko A., Lukin V., Djurović I. and Chobanu M. (2013). Prediction of filtering efficiency for DCT-based image denoising. 2013 2nd Mediterranean Conference on Embedded Computing (MECO), 97–100. DOI: 10.1109/MECO.2013.6601327.
Aiazzi B., Alparone L., Baronti S., Lastri C., Selva M. (2012). Spectral distortion in lossy compression of hyperspectral data. Journal of Electrical Computer Engineering, Article ID 850637, 8. DOI: https://doi.org/10.1155/2012/850637.
Albalawi U., Mohanty S. P. and Kougianos E. (2016). Energy-Efficient Design of the Secure Better Portable Graphics Compression Architecture for Trusted Image Communication in the IoT. 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 302–307. DOI: 10.1109/ISVLSI.2016.21.
Al-Shaykh O. K., Mersereau R. M. (1998). Lossy compression of noisy images. IEEE Transactions on Image Processing, 7(12), 1641–1652. DOI: 10.1109/83.730376.
Bataeva E. V. (2012). Flanering and video mania: Modern and postmodern visual practices. Voprosy Filosofii, 11, 61–68.
Bondžulić B., Stojanović N., Petrović V., Pavlović B., Miličević Z. (2021). Efficient Prediction of the First Just Noticeable Difference Point for JPEG Compressed Images. Acta Polytechnica Hungarica, 18(8), 201–220. DOI: 10.12700/APH.18.8.2021.8.11
Braunschweig R., Kaden I., Schwarzer J., Sprengel C., Klose K. (2009). Image data compression in diagnostic imaging: International literature review and workflow recommendation. Rofo, 181(7), 629–636.
Cameron A. C. and Windmeijer F. (1997). An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of Econometrics, 77(2), 329–342. DOI: 10.1055/s-0028-1109341.
Chang S. G., Yu B., Vetterli M. (1997). Image denoising via lossy compression and wavelet thresholding. Proceedings of International Conference on Image Processing, 1, 604–607. DOI: 10.1109/ICIP.1997.647985.
Chatterjee P. and Milanfar P. (2010). Is Denoising Dead? In IEEE Transactions on Image Processing, 19(4), 895-911. DOI: 10.1109/TIP.2009.2037087.
Chi M., Plaza A., Benediktsson J. A., Sun Z., Shen J., Zhu Y. (2016). Big data for remote sensing: Challenges and opportunities. Proceedings of the IEEE, 104(11), 2207–2219. DOI: 10.1109/JPROC.2016.2598228.
Christophe E. (2011). Hyperspectral Data Compression Tradeoff. In: Prasad S., Bruce L., Chanussot J. (eds) Optical Remote Sensing. Augmented Vision and Reality. DOI: 10.1007/978-3-642-14212-3_2.
Colom M., Buades A., Morel J.-M. (2014). Nonparametric noise estimation method for raw images. J. Opt. Soc. Am., 31(4), 863–871. DOI: 10.1364/JOSAA.31.000863.
Doss S., Pal S., Akila D., Jeyalaksshmi S., Jabeen T. N., Suseendran G. (2020). Satellite image remote sensing for identifying aircraft using SPIHT and NSCT. IEEE Signal processing magazine, 7(5), 631–634.
Guruswami V., Zuckerman D. (2016). Robust Fourier and Polynomial Curve Fitting. 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), 751–759. DOI: 10.31838/jcr.07.05.130.
Hussain A. J., Al-Fayadh A., and Radi N. (2018). Image compression techniques: A survey in lossless and lossy algorithms. Neurocomputing, 300, 44–69. DOI: 10.1016/ j.neucom.2018.02.094.
Kovalenko B., Lukin V., Naumenko V., Krivenko S. (2021). Analysis of noisy image lossy compression by BPG using visual quality metrics. 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT), 20–25. DOI: 10.1109/ATIT54053.2021.9678575.
Khorram S., van der WieleFrank C. F., Koch F. H., Nelson S. C., Potts M. D. (2016). Future Trends in Remote Sensing. Principles of Applied Remote Sensing, 277–285.
Krivenko S., Lukin V., Krylova O. (2019). Visually Lossless Compression of Dental Images. 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), 394–399.
Li F., Krivenko S., Lukin V. (2020). Adaptive two-step procedure of providing desired visual quality of compressed image. Proceedings of the 2020 4th International Conference on Electronic Information Technology and Computer Engineering, 407–414. DOI: 10.1145/3443467.3443791.
Li F., Krivenko S., Lukin V. (2020). A Fast Method for Visual Quality Prediction and Providing in Image Lossy Compression by SPIHT. Proceedings of Conference on Integrated Computer Technologies in Mechanical Engineering–Synergetic Engineering, 17–29. DOI: 10.1007/ 978-3-030-66717-7_2.
Ma Y., Wu H., Wang L., Huang B., Ranjan R., Zomaya A., Jie W. (2015). Remote sensing big data computing: Challenges and opportunities. Future Generation Computer Systems, 51, 47–60. DOI: 10.1016/j.future.2014.10.029.
Mahanti N. K., Pandiselvam R., Kothakota A., Ishwarya P., Chakraborty S. K., Kumar M., Cozzolino D. (2021). Emerging non-destructive imaging techniques for fruit damage detection: Image processing and analysis. Trends in Food Science & Technology, 120, 418–438. DOI: 10.1016/j.tifs.2021.12.021.
Naumenko V., Lukin V., Krivenko S., Kovalenko B. (2021). Lossy compression of single-channel images corrupted by additive white noise with performance prediction. Accepted to ICTM, 2021.
Pandey A., Saini B. S., Singh B., Sood N. J. M. (2020). Quality controlled ECG data compression based on 2D discrete cosine coefficient filtering and iterative JPEG2000 encoding. Measurement, 152, 107252. DOI: 10.1016/j.measurement.2019.107252.
Penna B., Tillo T., Magli E., Olmo G. (2007). Transform coding techniques for lossy hyperspectral data compression. IEEE Transactions on Geoscience Remote Sensing, 45(5), 1408–1421. DOI: 10.1109/TGRS.2007.894565.
Ponomarenko N., Lukin V., Astola J., Egiazarian K. (2015). Analysis of HVS-metrics’ properties using color image database TID2013. In International Conference on Advanced Concepts for Intelligent Vision Systems, 613–624. DOI: 10.1007/978-3-319-25903-1_53.
Ponomarenko N., Silvestri F., Egiazarian K., Carli M., Astola J., Lukin V. (2007). On between-coefficient contrast masking of DCT basis functions. Proceedings of the Third International Workshop on Video Processing and Quality Metrics for Consumer Electronics, 4.
Said A., Pearlman W. A. (1996). A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3), 243–250. DOI: 10.1109/76.499834.
Sayood K. (2017) Introduction to data compression, San Francisco: Morgan Kaufmann, 768. ISBN: 978-0-12-415796-5
Selva E., Kountouris A., Louet Y. (2021). K-Means Based Blind Noise Variance Estimation. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 1–7. DOI: 10.1109/VTC2021-Spring51267.2021.9449072.
Tao D., Di S., Liang X., Chen Z., Cappello F. (2018). Fixed-PSNR Lossy Compression for Scientific Data. 2018 IEEE International Conference on Cluster Computing (CLUSTER), 314-318. DOI: 10.48550/arXiv.1805.07384.
Taubman D. S., Marcellin M. W. (2013). JPEG2000: image compression fundamentals, standards, and practice. Retrived from http://extras.springer.com. DOI: 10.1007/ 978-1-4615-0799-4.
Wang Z., Simoncelli E. P., Bovik A. C. (2003). Multiscale structural similarity for image quality assessment. IEEE Asilomar Conference on Signals, Systems and Computers, 2, 1398–1402. DOI: 10.1109/ACSSC.2003.1292216.
Wei Z., Ngan K. N. (2009). Spatio-Temporal Just Noticeable Distortion Profile for Grey Scale Image/Video in DCT Domain. IEEE Transactions on Circuits and Systems for Video Technology, 19(3), 337–346. DOI: 10.1109/TCSVT. 2009.2013518.
Yee D., Soltaninejad S., Hazarika D., Mbuyi G., Barnwal R. and Basu A. (2017). Medical image compression based on region of interest using better portable graphics (BPG). 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 216–221. DOI: 10.1109/SMC.2017. 8122605.
Zabala A., Pons X., Diaz-Delgado R., Garcia F., Auli-Llinas F. and Serra-Sagrista J. (2006). Effects of JPEG and JPEG2000 Lossy Compression on Remote Sensing Image Classification for Mapping Crops and Forest Areas. 2006 IEEE International Symposium on Geoscience and Remote Sensing, 790-793. DOI: 10.1109/IGARSS.2006.203
Zappavigna M. (2016). Social media photography: construing subjectivity in Instagram images. Visual Communication, 15(3), 271–292. DOI: 10.1177/1470357216643220.
Zemliachenko A., Abramov S., Lukin V., Vozel B., Chehdi K. (2015). Lossy Compression of Noisy Remote Sensing Images with Prediction of Optimal Operation Point Existence and Parameters. SPIE Journal on Advances in Remote Sensing, 9(1), 26. DOI: 10.1117/1.JRS.9.095066.
Zhai G. and Min X. (2020). Perceptual image quality assessment: a survey. Science China Information Sciences, 63, 1-52.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійні умови: автори зберігають авторські права та надають журналу право першої публікації на твір, одночасно ліцензований за міжнародною ліцензією Creative Commons Attribution License International CC-BY, що дозволяє іншим поділитися твором з підтвердженням авторства твору та первинною публікацією в цьому журналі.
Автори, направляючи рукопис у редакцію «Українського журналу дистанційного зондування Землі», погоджуються з тим, що редакції передаються права на захист і використання рукопису (переданого до редакції журналу матеріалу, в т. ч. такі об’єкти авторського права як фотографії автора, рисунки, схеми, таблиці тощо), в тому числі на відтворення у пресі та мережі Інтернет, на поширення, на переклад рукопису на будь-які мови, експорту та імпорту примірників журналу зі статтею авторів з метою розповсюдження, на доведення до загального відома. Зазначені вище права автори передають редакції без обмеження терміну і на території всіх країн світу без обмеження в т. ч. на території України.
Автори гарантують наявність у них виняткових прав на використання переданого редакції матеріалу. Редакція не несе відповідальності перед третіми особами за порушення даних авторами гарантій. За Авторами залишається право використання їх опублікованого матеріалу, його фрагментів і частин в особистих, у тому числи наукових і освітянських цілях. Права на рукопис вважаються переданими Авторами редакції з моменту підписання до друку випуску журналу, в якому він публікується. Передрук матеріалів, опублікованих у журналі, іншими фізичними та юридичними особами можливий тільки зі згоди редакції, з обов’язковим зазначенням випуску журналу, в якому було опубліковано матеріал.