Gas exchange for the plants on the example of coastal sedge and comparison with the materials of spectro-gasometric ground-based measurements from the UAV and the Sentinel-2 satellite

Authors

  • Vadim Lyalko Scientific Centre for Aerospace Research of the Earth Institute of Geological Science National Academy of Sciences of Ukraine, Oles Honchar st, 55-B, 01054, Kyiv, Ukraine https://orcid.org/0000-0002-7552-5915
  • Stanislav Dugin Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Oles Honchar st, 55-B, 01054, Kyiv, Ukraine https://orcid.org/0000-0002-2960-3783
  • Oksana Sybirtseva Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Oles Honchar st, 55-B, 01054, Kyiv, Ukraine https://orcid.org/0000-0003-1181-0474
  • Yelizaveta Dorofey Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Oles Honchar st, 55-B, 01054, Kyiv, Ukraine https://orcid.org/0000-0002-4348-0628
  • Stanislav Golubov Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Oles Honchar st, 55-B, 01054, Kyiv, Ukraine https://orcid.org/0000-0003-3711-598X
  • Galyna Zholobak Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Oles Honchar st, 55-B, 01054, Kyiv, Ukraine https://orcid.org/0000-0003-4053-6101

DOI:

https://doi.org/10.36023/ujrs.2022.9.4.221

Keywords:

spectral and gasometric surveys, vegetation indices, correlation of ground and remote measurements, Carex riparia, CO2 concentration, UAV

Abstract

Spectro-gasometric ground-based measurements were carried out during 2020-2021. It was determined that five vegetation indices - REP (Red Edge Position), Green NRDI (Normalized Difference Vegetation Index), Green MOD (Green Model) and Red MOD (Red edge Model) are more responsive to the presence of СО2 concentration depending on leaf photosynthesis and leaf respiration of the coastal sedge (Carex riparia) with high correlation under Pearson from 0.60 to 0.72. Certain vegetation indices capture changes in СО2 concentration and can be recommended for use in carbon flux models for vegetation canopy. Data from DJI P4 Multispectral UAV, Parrot Bebop Pro Thermal and Sentinel-2 satellite compared to ground measurements on May 25, 2021.

References

Bush J. Characteristic values of key ecophysiological parameters in the genus Carex. Flora. 2001. Vol. 196. P. 405-430. https://doi.org/10.1016/S0367-2530(17)30084-1

Carlsson B.A., Callaghan T.V. Impact of climate factors on the clonal sedge Carex bigelowii: Implications for population growth and vegetative spread. Ecography. 1994. Vol. 17. P. 321-330.

Horler, D.N.H., Dockray M. and Barber J. The red edge of plant leaf reflectance. International Journal of Remote Sensing. 1983. Vol. 4(2). P. 273-288.

Clevers J., Kooistra L., Marnix V.D.B. Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sens. 2017. Vol. 9. P. 405. doi: 10.3390/rs9050405

Dash, J. and Curran, P.J. The MERIS Terrestrial Chlorophyll Index. International Journal of Remote Sensing. 2004. Vol. 25. P. 5003-5013. https://doi.org/10.1080/0143116042000274015

Harris A., Dash J. 2011. A new approach for estimating northern peatland gross primary productivity using a satellite-sensor-derived chlorophyll index. Journal Geophysical Research. V.116, G04002. doi:10.1029/2011JG001662

Rouse, J.W., Haas, R.H., Schell, J.A., & Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. Proceedings of 3rd Earth Resources Technology Satellite Symposium, Greenbelt, 10-14 December 1973. SP-351, 309-317.

Yu K., Anderegg J., Mikaberidze A., Karisto P. et al. Hyperspectral Canopy Sensing of Wheat Septoria Tritici Blotch Disease. Frontiers in Plant Sci., 17 August 2018. https://doi.org/10.3389/fpls.2018.01195 doi: 10.3389/fpls.2018.01195

Mahdianpari М. et al. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sens. 2019. Vol. 11. P. 43. doi:10.3390/rs11010043

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002. Vol. 83(1-2). P. 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2

Ling C. et al. A Study on Spectral Signature Analysis of Wetland Vegetation Based on Ground Imaging Spectrum Data. Journal of Physics: Conf. Series. 2017. Vol. 910. doi:10.1088/1742-6596/9

Jiang, Z., Huete, A.R., Didan, K., Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008. Vol. 112. P. 3833-3845. https://doi.org/10.1016/j.rse.2008.06.006

Huete A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988. Vol. 25. No. 3. P. 295-309.

Wang, L., Qu J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007. Vol. 34. L20405. doi:10.1029/2007GL031021

Ali A.M. et al. Validating the Predictive Power of Statistical Models in Retrieving Leaf Dry Matter Content of a Coastal Wetland from a Sentinel-2 Image. Remote Sens. 2019. Vol. 11. P. 1936. doi:10.3390/rs11161936

Gitelson, A., Merzlyak M. Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B: Biol. 1994. Vol. 22. P. 247-252.

Dotzler S., Hill J., Buddenbaum H., Stoffe J. The Potential of EnMAP and Sentinel - 2 Data for Detecting Drought Stress Phenomena in Deciduous Forest Communities. Remote Sens. 2015. Vol. 7. P. 14227-14258. doi:10.3390/rs71014227

Barnes, E.M., Clarke, T.R., Richards, S.E., Colaizzi, P.D., Haberland, J. et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. Proc. of the Fifth Int. Conference on Precision Agriculture, Bloomington, 2000. MN, USA.

McFeeters S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, International Journal of Remote Sensing. 1996. Vol. 17, iss. 7. P. 1425-1432.

Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing. 2006. Vol. 27, iss. 14. P. 3025-3033.

Kaplan G., Avdan Z.Y., Avdan U. Mapping and Monitoring Wetland Dynamics Using Thermal, Optical, and SAR Remote Sensing Data. Wetland Management. 2019. DOI: 10.5772/intechopen.80264

Gitelson A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004. Vol. 161(2). P. 165-173. doi: 10.1078/0176-1617-0117

Jara C., Delegido J., Ayala J., Lozano P., Armas A., Flores V. Study of wetlands in the Ecuadorian Andes through the comparison of Landsat-8 and Sentinel-2 images. Revista de Teledeteccion. 2019. Vol. 53. P. 45-57. DOI: https://doi.org/10.4995/raet.2019.11715

Gitelson, A., Viña A., Ciganda V., Rundquist D., Arkebauer T. Remote estimation of canopy chlorophyll content in crops. Geoph. Res. Lett. 2005. Vol. 32(8). P. 1-4. https://doi.org/10.1029/2005GL022688

Perry C.R., JR., Lautenschlager L.E.F., 1983. Functional Equivalence of Spectral Vegetation Indices. U.S D. A./S.R.S. Johnson Space Center SC2, Houston, Texas.

Naji T.A.H. Study of vegetation cover distribution using DVI, PVI, WDVI indices with 2D-space plot. Journal of Physics: Conf. Series 1003. 2018. 012083. doi:10.1088/1742-6596/1003/1/012083

Lyalko V.I., Khalaim O.O., Zholobak G.M., Vakoliuk M.V., Dugin S.S. 2015. Experimental measurement of carbon sink (CO2 absorption by plants) for the main agricultural crops of Ukraine. Ukrainian Journal of Remote Sensing. Vol. 4. P. 46-74. http://www.ujrs.org.ua/ujrs/article/view/38

Dugin S. S., Sybirtseva O. M., Golubov S. I., Dorofey Ye. M. 2019. Verification of multispectral data processing for the Sentinel-2A bands, Field ASD FieldSpec®3FR and UAV with the DJI STS-VIS. Ukrainian Journal of Remote Sensing. Vol. 21. P. 29-39. https://ujrs.org.ua/ujrs/article/view/147/170

Lyalko V.I., Zholobak G.M., Dugin S.S., Sybirtseva O. M., Golubov S.I., Dorofey Ye.M. 2020. Experimental research of the carbon circle features in “atmosphere – vegetation” system over the wetland area within the forest-steppe zone in Ukraine using the remote spectro - and gasometry surveys under the global climate changes. Ukrainian Journal of Remote Sensing. Vol. 24. P. 15-23. http://www.ujrs.org.ua/ujrs/article/view/166/187

Zholobak G.M., Dugin S.S., Sybirtseva O. M., Kazantsev T.A., Romanchuk I. F. 2020. Determination of nitrogen and chlorophyll content in two varieties of winter wheat plants by means of ground and airborne spectrometry. Ukrainian Journal of Remote Sensing. Vol. 26. P. 4-13. http://www.ujrs.org.ua/ujrs/article/view/166/187

Lyalko V.I., Zholobak G.M., Dugin S.S., Sybirtseva O. M., Dorofey Ye.M. 2021. Identifying vegetation indices as the rational spectral indicators of vegetation state under conditions of laboratory experiment. Ukrainian Journal of Remote Sensing. Vol. 8. № 2. P. 12-20. http://www.ujrs.org.ua/ujrs/article/view/193/211

Published

2022-12-08

Issue

Section

Earth observation data applications: Challenges and tasks