RESEARCH OF OIL POLLUTED SOIL AND VEGETATION COVER GROWN IN LABORATORY BY HYPERSPECTRAL REMOTE SENSING METHOD USING THE ASD FIELDSPEC 3FR SPECTRORADIOMETER

  • Г. М. Жолобак ДУ “Науковий центр аерокосмічних досліджень Землі Інституту геологічних наук НАН України”, Київ, Україна
  • С. С. Дугін ДУ “Науковий центр аерокосмічних досліджень Землі Інституту геологічних наук НАН України”, Київ, Україна
  • О. М. Сибірцева ДУ “Науковий центр аерокосмічних досліджень Землі Інституту геологічних наук НАН України”, Київ, Україна
  • Є. М. Дорофей ДУ “Науковий центр аерокосмічних досліджень Землі Інституту геологічних наук НАН України”, Київ, Україна

Abstract

The development of oil extraction and refining industry causes the environment pollution primarily the aquatic and terrestrial ecosystems. The vegetation and soils as the components of terrestrial ecosystems expose to oil pollution especially. The research of oil-polluted soil and vegetation cover grown in laboratory by hyperspectral remote sensing method using the ASD FieldSpec® 3FR spectroradiometer is performed. The vegetation cover of spring cereals (wheat, barley, and corn) is formed by the growing in the containers with soil. The hyperspectral vegetation indices together with the reflectance in the red edge of spectrum (ТСІ, GrNDVI and REP) are the higher values for corn cover in comparison with the different spring small grain cereals. The additional dose of oil applied in the polluted soils from the Staryi Sambir oil deposit induces the reduction in the values of above-mentioned vegetation indices for the every spring crop of interest. The research of oil-polluted soil and vegetation cover grown in laboratory by hyperspectral remote sensing method using the ASD FieldSpec 3FR spectroradiometer is performed. The vegetation cover of spring cereals (wheat, barley, and corn) is formed by the growing in the containers with the different soils. The hyperspectral vegetation indices together with the reflectance in the red edge of spectrum (ТСІ, GrNDVI and REP) are the higher values for corn cover in comparison with the different spring small grain cereals. The additional dose of oil applied in the polluted soils from the Staryi Sambir oil deposit induces the reduction in the values of above-mentioned vegetation indices for the every spring crop of interest. Accumulated GrNDVI values for the corn and TCI for the corn and spring barley are similar to the laboratory chlorophyll content in these crops (according to the ratio of cultivation substrates). The further remote study of oil polluted soils and their influence on vegetation demands to improve the spectral measurements using satellite image data.

References

GOST 17.1.4.01-80, General requirements for methods for the determination of petroleum products in natural and waste waters. Moscow, 1981 (in Russian).

Jura N., Tsvilinuk O., Terek O., (2006). Reactions of carex hirta l under soils oil pollution. Visn. Lviv. Uni-th Sir biology, № 42, P. 142-146. (in Ukrainian).

Jura N.M., (2011). Potentials of using plant test systems for biomonitoring oil polluted soils. Studia Biologica. Vol. 5, № 3., P. 183-196. (in Ukrainian).

Jura N., Podan I., (2017). Ecological consequences of extended oil production at staryi sambir petroleum deposit. Lviv. Un-th Sir biology. Vip. 76 - P. 120-127. (in Ukrainian).

Lyalko V.I., Shportiuk Z.M., Sibirtseva O.M., Dugin S.S., (2015). Hyperspectral indices for distinguish of oil-saturated soils using remote spectrometric data. Geologichnyy zhurnal, № 4 (353), p. 105 – 112. (in Ukrainian).

Nazarov A.V., (2007). The effect of oil pollution of soil on plants, West Perm. un-that. Biol. № 5 (10). - p. 134-141. (in Russian).

Petrosyan A.G, Dyatlov S.E, Tarasenko A.O., Dyatlova O.S., (2002). Biotesting as a method for express evaluation of soil toxicity Visn. ONU Vip. 7, №. 1. - P. 139-145. (in Ukrainian).

Terek O.I., (2007). Plant growth and development: textbook. Lviv: - View. Center of LNU Ivan Franko, P. 247. (in Ukrainian).

Shanda V.I., Shanda L.V. (2009). Investigation of the plants’ interaction in a soil environment. Soil Science, 10 (1-2). P. 14-22. (in Ukrainian).

Allen C.S., Krekeler M.P.S. (2010, May). Reflectance spectra of crude oils and refined petroleum products on a variety of common substrates. Proc. SPIE 7687, Active and Passive Signatures, 76870L (4 May 2010). Режим доступу: https://doi.org/10.1117/12.852200. (in English).

Andreoli G., Bulgarelli B., Hosgood B., Tarchi D. (2007). Hyperspectral Analysis of Oil and Oil-Impacted Soils for Remote Sensing Purposes, ISSN 1018-5593, EU Commission Directorate-General JRC Institute for the Protection and Security of the Citizen, Italy. Режим доступу https://www.ugpti.org/smartse/research/citations/downloads/Andreoli-HSI_for_Oil_and_Spills-2007.pdf. (in English).

Arellano P., Tansey K., Balzter H. Boyd D.S. (2015). Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environmental Pollution. Vol. 205. P. 225-239. doi:10.1016/j.envpol.2015.05.041. (in English).

Cloutis E.A. (1989). Spectral Reflectance Properties of Hydrocarbons: Remote-Sensing Implications. Science. Vol. 245, №. 4914. P. 165–168. (in English).

Dash J., Curran P.J. (2004). The MERIS terrestrial chlorophyll index. Int. Journal of Remote Sensing. Vol. 25. P. 5403-5413. (in English). http://www.informaworld.com/smpp/title~db=all~content=t713722504~tab=issueslist~branches=28 - v28http://www.informaworld.com/smpp/title~db=all~content=t713722504~tab=issueslist~branches=28 - v28

Gitelson A.A., Kaufman Y.J., Merzlyak M.N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment. Vol. 58, № 3. P. 289-298. (in English).

Herrmann I., Pimstein A.A., Karnieli Y., Cohen V., Alchanatis D., Bonfil J. (2011). LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sensing of Environment. Vol.115, № 8. P. 2141 - 2151. (in English).

Horler D.N.H., Dockray M., Barber J. (1983). The red edge of plant leaf reflectance. Int. Journal of Remote Sensing. Vol. 4. P. 273-288. (in English).

Huete A.R. (1988). A modified soil vegetation adjusted index (SAVI). Remote Sensing of Environment. Vol. 25, №1. Р. 295–309. (in English).

Jensen J.R. (2007). Remote sensing of the environment: an Earth resource perspective: 2nd ed. Upper Saddle River, NJ: Prentice-Hall, Inc., 592 р. (in English).

Kiang N. Y., Siefert J., Govindjee I., Blankenship R.E. (2007). Spectral signatures of photosynthesis. Review of Earth organisms. Astrobiology. Vol. 7, № 1. Р. 222−251. (in English).

Kühn F., Oppermann K., Hörig B. (2004). Hydrocarbon index – an algorithm for hyperspectral detection of hydrocarbons. Int. J. Remote Sensing. Vol. 25, № 12. P. 2467-2473. (in English).

Li L., Ustin S.L., Lay M. (2005). Application of AVIRIS data in detection of oil-induced vegetation stress and cover change at Jornada, New Mexico. Remote Sens. Environ. - Vol. 94, №1. P.1-16. (in English).

Noomen M.F., van der Meer F.D., Skidmore A.K. (2005, June). Hyperspectral remote sensing for detecting the effects of three hydrocarbon gases on maize reflectance. Global monitoring for sustainability and security: Proc. of the 31st Int. Symp. on Remote Sensing of Environment (Saint-Petersburg, 20-24 June 2005). P. 4. (in English).

Prince S.D. (1991). A model of regional primary production for use with coarse resolution satellite date. Int. J. Remote Sensing. Vol. 6, No. 7. Р. 1313-1330. (in English).

Rasmussen, M.S. (1996). Operational yield forecast using AVHRR NDVI data: reduction of environmental and inter-annual variability. Int. J. Remote Sensing. Vol. 18, No. 5. Р. 1059−1077. (in English).

Rouse J.W., Jr., Haas R.H., Schell J.A., Deering D.W. (1973). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Prog. Rep. RSC 1978-1. 93 p. (in English).

Short N. M., Bolton J. (2006). NASA Remote Sensing Tutorial, Access mode: http://rst.gsfc.nasa.gov/Sect5/Sect5 5.html. (in English).

Strong C.J., Burnside N.G., Llewellyn D. (2017). The potential of small-Unmanned Aircraft Systems for the rapid detection of threatened unimproved grassland communities using an Enhanced Normalized Difference Vegetation Index. PLoS ONE. No. 12 (10).– Р. 1-16. Access mode:: https://doi.org/10.1371/journal.pone.0186193. (in English).

Tian Q. (2012, August-September). Study on Oil-Gas Reservoir detecting methods using hyperspectral remote sensing // XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXIX-B7. P. 157-162. Access mode: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXIX-B7/157/2012/isprsarchives-XXXIX-B7-157-2012.pdf. (in English).

Ustin S.L., Gitelson A.A., Jacquemoud S., Schaepman M., Asner G. P., Gamon J.A., Zarco-Tejada P. (2009). Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sensing of Environment. Vol. 113, Supplement 1 (Imaging Spectroscopy Special Issue). P. S67-S77. (in English).

Section
Earth observation data applications: Challenges and tasks