The state of actual land use monitoring in the leading countries with use of satellite data

  • Andrii Shelestov Space Research Institute NAS of Ukraine, SSA of Ukraine, Kyiv, Ukraine
  • Bohdan Yailymov Space Research Institute NAS of Ukraine, SSA of Ukraine, Kyiv, Ukraine
Keywords: Land Cover, ISO, JRC, IACS, CDL, GEOGLAM, monitoring of agricultural land, classification of satellite data

Abstract

This paper provides the results of the analysis of satellite data usage for monitoring the use of agricultural land in different countries. Satellite data availability, generic data processing and retrieval approaches were analyzed from practical point of view.

References

Iнформацiйнi технологiї глибинного машинного навчання для аналiзу змiн земного покриву / Н. М. Куссуль [та ін.]. — Доповіді Національної Академії Наук України. — 2016. — No8. — C. 26–32. — DOI: 10.15407/dopovidi2016.08.000.

Супутниковий агромоніторинг в Україні: Міжнародний симпозіум за проектом Європейського космічного агентства “Sentinel-2 for Agriculture” / Н. М. Куссуль [та ін.]. — Вісник Національної академії наук України. — 2016. — No 12. — C. 99–104. — DOI: doi.org/10.15407/visn2016.12.099.

Супутниковий агромоніторинг в Україні: перспективи участі в європейських програмах / Н. М. Куссуль [та ін.]. — Вісник Національної академії наук України. — 2016. — No 2. — C. 96–102. — DOI: 10.15407/visn2016.02.096.

AFC Annual Crop Inventory. Status and Challenges / T. Fisette [et al.]. — Second International Conference on AgroGeoinformatics (AgroGeoinformatics). — 2013. —DOI: 10.1109/ArgoGeoinformatics.2013.662192.

Agricultural Market Information System [Електронний ресурс]. — Режим доступу: http://www.amisoutlook.org/(23.02.2017). — Назва з екрану.6. Annual SpaceBased Crop Inventory for Canada: 2009–2014 / T. Fisette [et al.]. — IGARSS 2014. — 2014. — P. 5095–5098. — DOI: 10.1109/IGARSS.2014.6947643.

Assessing tree cover in agricultural landscapes using high resolution aerial imagery / G. Liknes [et al.]. — The Journal of Terrestrial Observation. — 2010. — Vol. 2, No. 1. — P. 38–55.

Bakan G.M. Fuzzy ellipsoidal filtering algorithm of static object state / G. M. Bakan, N. N. Kussul // Problemy Upravleniya I Informatiki (Avtomatika). — 1996. — No 5. — Р. 77–92.

CAP at a glance [Електронний ресурс]. — Режим доступу: http://ec.europa.eu/agriculture/ capoverview/index_en.htm (23.02.2017). — Назва з екрану.

Classification and change detection using Landsat TM data: when and how to correct atmospheric effects / C. Song [et al.]. — Remote Sensing of Environment. — 2001. — Vol. 75, No. 2. — P. 230–244.

Compact polarimetry overview and applications assessment / F.J. Charbonneau, [et al.]. — Canadian Journal of Remote Sensing / Journal canadien detection. — 2010. — Vol. 36. — No. 2. — P. 298–315. — DOI: 10.5589/m10062.

Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine / A. Kolotii [et al.]. — International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. — 2015. — Vol. XL7/W3. — P. 39–44. DOI:10.5194/isprsarchivesXL7W3392015.

Congalton R. Assessing the accuracy of remotely sensed data: principles and applications / Congalton R. G., Green K. // Lewis Publishers, Boca Raton, Fla. — 1999.

Corn and soybean mapping in the United States using MODIS timeseries data sets / J. Chang, [et al.]. — Agronomy Journal. — 2007. — Vol. 99. — No. 6. — P. 1654–1664.

Crop area estimation in Ukraine using satellite data within the MARS project 2012 / N. Kussul, [et al.]. — IEEE International Geoscience and Remote Sensing Symposium (IGARSS). — 2012. — P. 3756–3759. — DOI:10.1109/IGARSS.2012.6350500.

Deep Learning Approach For Large Scale Land Cover Mapping Based On Remote Sensing Data Fusion / N. Kussul [et al.]. — Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International — 2016. — P. 198–201. — DOI: 10.1109/IGARSS.2016.7729043.

Efficiency Assessment of Multitemporal CBand Radarsat-2 Intensity and Landsat-8 Surface Reflectance Satellite Imagery for Crop Classification in Ukraine / S. Skakun [et al.]. — IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. — Aug. 2016. — Vol. 9, No. 8. — P. 3712–3719. — DOI: 10.1109/JSTARS. 2015.2454297.

Flood mapping with satellite images and its web service / J. Shan [et al.]. — Photogrammetric Engineering & Remote Sensing. — 2010. — Vol. 76. — No. 2. — P. 102–104.

Friedl M. A. Decision tree classification of land cover from remotely sensed data / M. A. Friedl, C. E. Brodley // Remote Sensing of Environment. — 1997. — Vol. 61, No. 3. — P. 399–409.

Group on Earth Observations [Електронний ресурс]. — Режим доступу: http://www.earthobservations.org/geoglam.php (23.02.2017). — Назва з екрану.

Guidance document (campaign 2016) for OnTheSpotChecks (OTSC) and area measurement according to articles 24, 25, 26, 27, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41 of Regulation (EU) 809/2014 [Електронний ресурс]. — Режим доступу: https://marswiki.jrc.ec.europa.eu/ (23.02.2017). — Назва з екрану.

Guidance document (revised version after simplification) on aid applications and payment claims referred to in article 72 of Regulation (EU) 1306/2013 [Електронний ресурс]. — Режим доступу: https://marswiki.jrc.ec.europa.eu/wikicap/images/5/58/DSDSCG201439_aid_application_guidance_final_rev1_clean.pdf (23.02.2017). — Назва з екрану.

Guidance document (revised version after simplification) on the establishment of the EFA layer referred to in article 70(2) of Regulation (EU) 1306/2013 [Електронний ресурс]. — Режим доступу: https://marswiki.jrc.ec.europa.eu/wikicap/images/4/4b/DSCG201431_EFAlayer_FINAL2015.doc.pdf (23.02.2017). —Назва з екрану.

Guidance document (revised version after simplification) on the establishment of the EFA layer referred to in article 70(2) of Regulation (EU) 1306/2013 [Електронний ресурс]. — Режим доступу: https://marswiki.jrc.ec.europa.eu/wikicap/images/9/98/DSCG201432_FINAL_Rev2_FINAL_OTSC_guideline_2016_clean.pdf (23.02.2017). — Назва з екрану.

Guidance document on the implementation by Member States of permanent grassland provisions in the context of greening [Електронний ресурс]. — Режим доступу: https://marswiki.jrc.ec.europa.eu/wikicap/images/0/05/DSEGDP201502_rev4_clean.pdf (23.02.2017). — Назва з екрану.

Guidance document on the Land Parcel Identification System (LPIS) under articles 5, 9 and 10 of commission delegated regulation (eu) no 640/2014 and on the establishment of the efalayer referred to in article 70(2) of regulation (eu) no 1306/2013 [Електронний ресурс]. — Режим доступу: https://marswiki.jrc.ec.europa.eu/wikicap/images/c/ce/DSCG201433_FINAL__Rev_3_FINAL_LPIS_guideline_2016_clean.pdf (23.02.2017). — Назва з екрану.

Guidance document on the Land Parcels Identification System (LPIS) under articles 5, 9 and 10 of Commission Delegated Regulation (EU) 640/2014 [Електронний ресурс]. — Режим доступу: https://marswiki.jrc.ec.europa.eu/wikicap/images/a/ab/TG_Check_Crop_Diversification.pdf (23.02.2017). — Назва з екрану.

Inseason crop inventory using multiangle and multipass RADARTSAT2 SAR data over the Canadian prairies / J. Shang [et al.]. — SPIE The International Society for Optical Engineering. — 2011. — Vol. 8156, Article No. 815604. — DOI: 10.1117/12.8942112011.

Integrated Administration and Control System (IACS) [Електронний ресурс]. — Режим доступу: http://ec.europa.eu/agriculture/directsupport/iacs/index_en.htm (23.02.2017). — Назва з екрану.

Joint Research Centre [Електронний ресурс]. — Режим доступу: https://marswiki.jrc.ec.europa.eu/wikicap/index.php/Main_Page (23.02.2017). — Назва з екрану.

Kauth R.J. The Tasseled Cap A Graphic Description of the SpectralTemporal Development of Agricultural Crops as Seen by LANDSAT / R. J. Kauth, G. S. Thomas // Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, Indiana. — 1976. — P. 41–57.

Land administration in the agricultural sector under INSPIRE [Електронний ресурс]. — Режим доступу: http://www.eurocadastre.org/pdf/rome_december08/presentations/7_land_administration_agriculture_inspire_framework.pdf (23.02.2017). — Назва з екрану.

Land Cover Changes Analysis Based on Deep Machine Learning Technique / N. Kussul [et al.]. — Journal of Automation and Information Sciences. — 2016. — P. 42–54. — DOI: 10.1615/JAutomatInfScien.v48.i5.40.

Land Remote Sensing Policy Act of 1992 [Електронний ресурс]. — Режим доступу: https://www.congress.gov/bill/102ndcongress/senatebill/2297 (23.02.2017). — Назва з екрану.

LargeScale Classification of Land Cover Using Retrospective Satellite Data / M.S. Lavreniuk [et al.]. — Cybernetics and Systems Analysis. — 2016. — Vol 52. — No 1. — P. 127–138. — DOI: 10.1007/s1055901698074.

Mapping plant functional types from MODIS data using multisource evidential reasoning / W. Sun, S. Liang [et al.]. — Remote Sensing of Environment. — 2008. — Vol. 112. — No. 3. — P. 1010–1024.

Methodology for a Canadian agricultural land cover classification / T. Fisette [et al.]. — 1st International Conference on Objectbased Image Analysis, Salzburg University, Austria, 4–5 July 2006. — 2006.

Monitoring Agricultural Resources [Електронний ресурс]. — ежим доступу: https://ec.europa.eu/jrc/en/mars. (23.02.2017). — Назва з екрану.

Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program / C. Boryan [et al.]. — Geocarto International. — 2011. — Vol. 26. — No. 5. — P. 341–358. — DOI: 10.1080/10106049.2011.562309.

Mueller R. Categorized Mosaicked Imagery from the National gricultural tatistics Service Crop Acreage Estimation Program. Available on the CD/ R. Mueller // Proceedings of the ASPRS 2000 Conference. — 2000.

Opening the Landsat Archive/Product Specifications [Електронний ресурс]. — Режим доступу: USGS, 2010. Available from: http://landsat.usgs.gov/products_data_at_no_charge.php (23.02.2017). — Назваз екрану.

Pal M. An assessment of the effectiveness of decision tree methods for land cover classification / M. Pal, P. M. Mather // Remote Sensing of Environment. — 2003. — Vol. 86. — No. 4. — P. 554–565.

Parcel based classification for agricultural mapping and monitoring using multitemporal satellite image sequences / N. Kussul [et al.]. — The International Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International. — 2015. — P. 165–168. — DOI: 10.1109/IGARSS.2015.7325725.

Parcelbased Crop Classification in Ukraine Using Landsat8 Data and Sentinel1A Data / N. Kussul [et al.]. — IEEE Journal of Selected Topics in Applied Eart Observations and Remote Sensing. — 2016. — Vol. 9. —No. 6. — P. 2500 – 2508. — DOI: 10.1109/JSTARS.2016.2560141.

Regional Retrospective High Resolution Land Cover For Ukraine: Methodology And Results / M. Lavreniuk [et al.]. — International Geoscience and Remote Sensing Symposium 2015 (IGARSS 2015), No 15599383. — P. 3965–3968. DOI: 10.1109/IGARSS.2015.7326693.

Regional scale crop mapping using multitemporal satellite imagery / N. Kussul [et al.]. — International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. — 2015. — P. 45–52. — DOI:10.5194/isprsarchivesXL7W3452015.

Remote Sensing and Image Interpretation / T. M. Lillesand [et al.]. — Wiley & Sons, New York. — 1994. — P. 523–525.

Seffrin R. Evaluating the accuracy of 2005 multitemporal TM and AWiFS imagery for cropland classifcation of Nebraska. / R. Seffrin // ASPRS 2007, Annual Conference, 7–11 May 2007, Tampa, Florida.

Subtitle VI — Earth Observations. [Електронний ресурс]. — Режим доступу: https://www.nasa.gov/sites/default/files/atoms/files/public_law_111314title_51_national _and_commercial_space_programs_dec._18_2010.pdf (23.02.2017). — Назва з екрану.

Technical Guidance [Електронний ресурс]. — Режим доступу: https://marswiki.jrc.ec. (23.02.2017). — Назва з екрану.

Technical Guidance document on the OnTheSpot Check of Crop Diversification requirements [Електронний ресурс]. — Режим доступу: https://marswiki.jrc.ec.europa.eu/wikicap/ (23.02.2017). — Назва з екрану.

Technical Guidance document on the OnTheSpot Check of Ecological Focus Areas requirements [Електроннийресурс]. — Режим доступу: https://marswiki.jrc.ec.europa.eu/wikicap/ (23.02.2017). — Назва з екрану.

Technologies for Satellite Data Processing and Management Within International Disaster Monitoring Projects / N. Kussul [et al.]. — In. Grid and Cloud Database Management Grid — Fiore, S.; Aloisio, G. (Eds.). — 2011, Springer — Р. 279–306.

TerraSARX and RADARSAT-2 for crop classification and acreage estimation / H. McNairn [et al.]. — International Geoscience and Remote Sensing Symposium (IGARSS). — 2009. — P. 898–901.

The use of satellite data for agriculture drought risk quantification in Ukraine / S. Skakun [et al.]. — Geomatics, Natural Hazards and Risk. — 2015. — P. 1–18.— DOI:10.1080/19475705.2015.1016555.

The use of satellite SAR imagery to crop classification in Ukraine within JECAM project / N. Kussul [et al.]. — IEEE International Geoscience and Remote Sensi ng Symposium(IGARSS). — 2014. — P. 1497—1500.

Towards operational radaronly crop type classification: comparison of a traditional decision tree with a random forest classifier / B. Deschamps [et al.]. — Canadian Journal of Remote Sensing. — 2012. — Vol. 38. — No. 1. — P. 60–68.

US GEOGLAM [Електронний ресурс]. — Режим доступу:http://www.usgeoglam.org/ (23.02.2017). — Назва з екрану.

Use of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research / S.K. Maxwell [et al.]. — Journal of Exposure Science and Environmental Epidemiology. — 2010. — Vol. 20. — No. 2. — P. 176–185.

Use of the Earth Observing One (EO1) Satellite for the Namibia SensorWeb Flood Early Warning Pilot / D. Mandl [et al.]. — IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. — 2013. — Vol. 6. — No 2. — P. 298–308.

Validation methods for regional retrospective high resolution land cover for Ukraine / M. Lavreniuk [et al.]. — Geoscience and Remote Sensing Symposium (IGARSS).

Section
Earth observation data applications: Challenges and tasks