An approach to prediction and providing of compression ratio for DCT based coder applied to remote sensing images

  • R. Kozhemiakin National Aerospace University, Kharkov, Ukraine
  • A. Zemliachenko National Aerospace University, Kharkov, Ukraine
  • V. Lukin National Aerospace University, Kharkov, Ukraine
  • S. Abramov National Aerospace University, Kharkov, Ukraine
  • B. Vozel University of Rennes 1, Lannion, France
Keywords: remote sensing, DCT-based coders, compression ratio prediction, hyperspectral data

Abstract

A novel compression ratio prediction and providing technique applicable to noisy and almost noise-free remote sensing images is proposed. It allows predicting and then providing a desired compression ratio for DCT-based coder in automatically manner. The proposed technique is algorithmically simple and has low computational complexity that allows using it onboard spaceborne or airborne carriers. The study is carried out for test and real-life Hyperion images. It is shown that the proposed technique has high accuracy and it is robust with respect to noise intensity and type. Relative error of prediction of providing compression ratio does not exceed 10%.

References

Christophe E. Hyperspectral Data Compression Tradeoff / E. Christophe // Optical Remote Sensing. Advances in Signal Processing and Exploitation Techniques, Springer. – 2011. – Vol. 8. – P. 9-29.

Peculiarities of 3D compression of noisy multichannel images / R. Kozhemiakin, S. Abramov, V. Lukin, I. Djurovic, B. Vozel // Procidings of Mediterranean Conference on Embedded Computing (MECO). – 2015. – P. 331-334.

Chang C-I. Hyperspectral Data Processing: Algorithm Design and Analysis. First Editions / C-I. Chang // John Wiley and Sons, Inc. – 2013. – 1164 p.

Foreword to the Special Issue on Hyperspectral Image and Signal Processing / A. Zhare, J. Bolton, J. Cnanussot, P. Gader // IEEE Journal on Selected Topics in Applied Earth Observations and Remote Sensing. – 2014. – Vol. 7(6). – P. 1841-1843.

Lossy Compression of Hyperspectral Images Based on Noise Parameters Estimation and Variance Stabilizing Transform / N. Zemliachenko, A. Kozhemiakin, L. Uss, K. Abramov, N. Ponomarenko, V. Lukin, B. Vozel, K. Chehdi // Journal of Applied Remote Sensing. – 2014. – Vol. 8. – P. 1-25.

Skauli T. Sensor noise informed representation of hyperspectral data, with benefits for image storage and processing / T. Skauli // Optics Express. – 2011. – Vol. 19(14). – P. 13031-13046.

Schowengerdt R. A. Remote Sensing: Models and Methods for Image Processing: Third edition / R. A. Schowengerdt // Academic Press, San Diego. – 2006. – 560 p.

Lossy compression of noisy remote sensing images with prediction of optimal operation point existence and parameters / A.N. Zemliachenko, S.K. Abramov, V.V. Lukin, B. Vozel, K. Chehdi // Journal of Applied Remote Sensing. – 2015. – Vol. 9. – P. 095066-095066.

Wallace G.K. The JPEG still picture compression standard / G.K. Wallace // Commun. ACM. – 1991. – Vol. 34. – P. 30–44.

ADCT: A new high quality DCT based coder for lossy image compression / N. Ponomarenko, V. Lukin, K. Egiazarian, J. Astola // CD ROM Proceedings of LNLA. – Switzerland. – 2008. – 6 p.

Said A. A new fast and efficient image codec based on the partitioning in hierarchical trees/ A. Said // IEEE Trans. on Circuits Syst. Video Technology. – 1996. – Vol. 6. – Р. 243-250.

Image lossy compression providing a required visual quality / N. Ponomarenko, A. Zemliachenko, V. Lukin, K. Egiazarian, J. Astola // CD-ROM Proc. of the Seventh International Workshop on Video Processing and Quality Metrics for Consumer Electronics. – 2013.– 6 p.

Hsia S-C. A fast rate-distortion optimization algorithm for H.264/AVC codec / S-C. Hsia, W-C. Hsu, S-R. Wu // Signal, Image and Video Processing. – 2013.– Vol. 7(5). – P.939-949.

He Z. A linear source model and a unified rate control algorithm for DCT video coding / Z. He, S.K.Mitra // IEEE Transactions, Circuits and Systems for Video Technology. – 2002. – Vol. 12(11). – P. 970 – 982.

DCT Based High Quality Image Compression / N.N. Ponomarenko, V.V. Lukin, K.Egiazarian, J. Astola // Proceedings of 14th Scandinavian Conference on Image Analysis. – 2005. – Vol. 14. – P. 1177-1185.

Al-Chaykh O.K. Lossy compression of noisy images / O.K. Al-Chaykh, R.M. Mersereau // IEEE Transactions on Image Processing. – 1998. – Vol. 7 (12). – P. 1641-1652.

Prediction of Compression Ratio in Lossy Compression of Noisy Images / A. Zemliachenko, R. Kozhemiakin, B. Vozel, V. Lukin // Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). – 2016. – 3 p.

Compression ratio prediction in lossy compression of noisy images / A.N. Zemliachenko, S.K. Abramov, V.V. Lukin, B. Vozel, K. Chehdi // Geoscience and Remote Sensing Symposium (IGARSS), IEEE International. – 2015. –P. 3497-3500.

An R-squared measure of goodness of fit for some common nonlinear regression models / C. Cameron, A. Windmeijer, A. G. Frank, H. Gramajo, D. E. Cane, C. Khosla // Journal of Econometrics. – 1997. – Vol. 77. – № 2. – P. 329-342.

Osokin A.N. Modified JPEG encoder with bit-rate control / A.N. Osokin, D.V. Sidorov / Online journal "Naukovedenie". – 2013. – 9 p. http://naukovedenie.ru/PDF/69tvn513.pdf

Murtagh F. Astronomical image and signal processing / F. Murtagh, J. L. Starck // Signal Processing Magazine, IEEE. – 2001. – Vol. 18 (2). – P. 30-40.

Section
Techniques for Earth observation data acquisition, processing and interpretation