Intercalibration of methods for the land surface thermodynamic temperature retrieving inside urban area by thermal-infrared satellite imaging

Authors

  • Sergey Stankevich Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Olesia Honchara str., 55-b, Kyiv, 01054, Ukraine https://orcid.org/0000-0002-0889-5764
  • Volodymyr Filipovich Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Olesia Honchara str., 55-b, Kyiv, 01054, Ukraine https://orcid.org/0000-0002-9404-8122
  • Mykola Lubsky Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Olesia Honchara str., 55-b, Kyiv, 01054, Ukraine https://orcid.org/0000-0002-3545-0007
  • Hanna Krylova Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Olesia Honchara str., 55-b, Kyiv, 01054, Ukraine https://orcid.org/0000-0001-9863-4180
  • Sergey Kritsuk Federal State Budgetary Institution of Science “Research Center for Environmental Safety of the Russian Academy of Sciences”, Saint Petersburg https://orcid.org/0000-0002-3781-322X
  • Olga Brovkina Federal State Budgetary Institution of Science “Research Center for Environmental Safety of the Russian Academy of Sciences”, Saint Petersburg https://orcid.org/0000-0001-5860-2184
  • Viktor Gornyy Federal State Budgetary Institution of Science “Research Center for Environmental Safety of the Russian Academy of Sciences”, Saint Petersburg https://orcid.org/0000-0001-9706-6919
  • Andrei Tronin Federal State Budgetary Institution of Science “Research Center for Environmental Safety of the Russian Academy of Sciences”, Saint Petersburg https://orcid.org/0000-0002-7852-8396

DOI:

https://doi.org/10.36023/ujrs.2015.7.59

Keywords:

satellite imaging, urban area, land surface, infrared irradiation, retrieving thermodynamic temperature, emissivity, intercalibration

Abstract

A comparative independent evaluation (intercalibration) of two methods for the land surface thermodynamic temperature retrieving by thermal infrared satellite imaging of Kiev was done in the framework of joint Russian and Ukrainian project “Investigation of urbanization influence on city’s microclimate (using thermal infrared satellite mapping)”, supported by RFBR (No 14-05-90416) and NAS of Ukraine (No 10-05-14). Both, low resolution EOS/MODIS and medium-resolution Landsat 8/ TIRS thermal infrared images were processed. Algorithms for the thermodynamic temperature and emissivity retrieving based on regressions and ground-truth measurements were applied and compared. Average regular error of land surface temperature retrieving was estimated as –0.93°C. Such accuracy is quite acceptable for the urban environment quantitative temperature monitoring by thermal infrared satellite imaging.

References

Baranov, V. L., Vodopyan, S. V., Hryshchuk, R. V. (2006). Alhorytm avtomatyzovanoho otsinyuvannya spektralʹnoho koefitsiyenta teplovoho vyprominyuvannya. Visnyk ZHDTU. Iss. 4 (39). 77–83

Chander, G., Markham, B .L., Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment. Vol. 113. No. 5. P. 893–903.

Coll, C., Galve, J. M., Snchez, J. M., Caselles, V. (2010). Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Transactions on Geoscience and Remote Sensing. Vol. 48. No. 1. P. 547–555.

Felde, G. W., Anderson, G. P., Gardner, J. A., Adler-Golden, S. M., Matthew, M. W. (2004). Water vapor retrieval using the FLAASH atmospheric correction algorithm. Proceedings of SPIE. Vol. 5425. P. 386–396.

Gillespie, A. R., Rokugawa, S., Hook, S. J., Matsunaga, T., Kahle A. B. (1998). Temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geosience and Remote Sensing. Vol. 36. No. 4. P. 1113–1126.

Gornyy, V. I., Kritsuk, S. G. (2006). O vozmozhnosti kartografirovaniya fiziko-geograficheskikh zon teplovoy kosmicheskoy s"yemkoy. Doklady akademii nauk. Vol. 411. Iss. 5. 684–686.

Guanter, L., Alonso, L., Moreno, J. (2005). A method for the surface reflectance retrieval from PROBA/CHRIS data over land: Application to ESA SPARC campaigns. IEEE Transactions on Geoscience and Remote Sensing. Vol. 43. No. 12. P. 2908–2917. https://www.researchgate.net/publication/3203937_A_method_for_the_surface_reflectance_retrieval_from_PROBACHRIS_data_over_land_application_to_ESA_SPARC_campaigns

Kaspersen, P. S., Fensholt, R., Drews, M. (2015). Using Landsat vegetation indices to estimate impervious surface fractions for European cities. Remote Sensing. Vol. 7. No. 6. P. 8224–8249.

Kaufman, Y. J., Gao, B. C. (1992). Remote-sensing of water-vapor in the near IR from EOS/MODIS. IEEE Transactions on Geoscience and Remote Sensing. Vol. 30. No. 5. P. 871–884.

Kriksunov, L. Z. (1978). Spravochnik po osnovam infrakrasnoy tekhniki. M.: Sovetskoye radio.

Kuenzer, C., Dech, S. (Eds). (2013). Thermal Infrared Remote Sensing: Sensors, Methods, Applications. Dordrecht: Springer.

Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z, Trigo, I. F., Sobrino J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives / Z.-L. Li, Remote Sensing of Environment. Vol. 131. No. 12. P. 14–37.

Paproth, C., Schler, E., Scherbaum, P., Bцrner, A. (2012). SENSOR++: Simulation of remote sensing systems from visible to thermal infrared. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXIX. Part B1. P. 257–260.

Perez Hoyos, I. C. (2014). Comparison between land surface temperature retrieval using classification based emissivity and NDVI based emissivity. International Journal of Recent Development in Engineering and Technology. Vol. 2. No. 2. P. 26–30.

Pérez-Ramírez, D., Whiteman, D. N., Smirnov, A., Lyamani, H., Holben, B. N., Pinker, R., Andrade, M., Alados-Arboledas L. (2014). Evaluation of AERONET precipitable water vapor versus microwave radiometry, GPS, and radiosondes at ARM sites. Journal of Geophysical Research. Vol. 119. No. 15. P. 9596–9613.

Popov, M. O., Likholit, M. I., Stankevych, S. A., Polezhayev, V. V., Tyahur, V. M., Tytarenko, O. V. (2011). Perspektyvy vykorystannya infrachervonoho aeroznimannya dlya vyrishennya pryrodoresursnykh i spetsialnykh zadach. Materialy naukovo-praktychnoyi konferentsiyi “Naukovi aspekty heodeziyi, zemleustroyu ta informatsiynykh tekhnolohiy”. Kyiv, IZIT NAU, S. 33–39.

Snyder, W. C., Wan, Z., Zhang, Y., Feng Y.–Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing. Vol. 19. No. 14. P. 2753–2774.

Sobrino, J. A., Jimйnez-Muсoz, J. C., Soria, G., Romaguera, M., Guanter L. (2008). Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing. Vol. 46. No. 2. P. 316–327.

Tang, H., Li, Z.-L. Quantitative Remote Sensing in Thermal Infrared: Theory and Applications. Heidelberg: Springer-Verlag.

Valor, E., Caselles, V. (1996). Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sensing of Environment. Vol. 57. No. 3. P. 167–184.

Van de Griend, A. A., Owe, M. (1993). On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. International Journal of Remote Sensing. Vol. 14. No. 6. P. 1119–1131.

Wan, Z., Dozier, J. (1996). A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing. Vol. 34. No. 4. P. 892–905.

Wittich, K.-P. (1997). Some simple relationships between land-surface emissivity, greenness and the plant cover fraction for use in satellite remote sensing. International Journal of Biometeorology. Vol. 41. No. 2. P. 58–64.

Yang, H., Zhang, L. F., Zhang, X., Fang, C., Tong Q. (2011). Algorithm of emissivity spectrum and temperature separation based on TASI data. Journal of Remote Sensing. Vol. 15. No. 6. P. 1242–1254.

Yu, X., Guo, X., Wu Z. (2014). Land surface temperature retrieval from Landsat 8 TIRS – comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing. Vol. 6. No. 10. P. 9829–9852.

Zhang, Z. M., Tsai, B. K., Machin G. (Eds). (2010). Radiometric Temperature Measurements Fundamentals / Amsterdam: Academic Press.

Zhao, S., Qin, Q., Yang, Y., Xiong, Y., Qiu G. (2009). Comparison of two split-window methods for retrieving land surface temperature from MODIS data. Journal of Earth System Science. Vol. 118. No. 4. P. 345–353.

Published

2015-12-28

How to Cite

Stankevich, S., Filipovich, V., Lubsky, M., Krylova, H., Kritsuk, S., Brovkina, O., Gornyy, V., & Tronin, A. (2015). Intercalibration of methods for the land surface thermodynamic temperature retrieving inside urban area by thermal-infrared satellite imaging. Ukrainian Journal of Remote Sensing, (7), 12–21. https://doi.org/10.36023/ujrs.2015.7.59

Issue

Section

Techniques for Earth observation data acquisition, processing and interpretation