Estimation of forests productivity response on local climatic variations within territory of Ukraine with satellite data using

Authors

  • Dmytro Movchan Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Olesia Honchara str., 55-b, Kyiv, 01054, Ukraine https://orcid.org/0000-0003-0176-7740

DOI:

https://doi.org/10.36023/ujrs.2015.6.55

Keywords:

forest, carbon cycle, climate change, gross primary productivity, remote sensing, principal component analysis

Abstract

Forests biomass is a significant carbon pool. And the dynamic of forest productivity is directly related to climatic factors of the territories. In the paper the analysis of the terrestrial forest productivity and climate drivers on regional levels has been done.
The gross primary production (GPP) and net primary production (NPP) from a global satellite-based terrestrial production efficiency model MOD17 as the forest productivity indicator and meteorological data from the weather station network as climatic indicators were used. Correlation analysis between forest productivity and climatic indicators for different growing seasons and landscape-climatic zones of Ukraine has been done. Multiple linear regression models for corresponding seasons and zones have been simulated using the principal component analysis (PCA).

References

Anderson M. C. An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light-use efficiency / M. C. Anderson, J. M. Norman, T. P. Meyers, G. R. Diak // Agricultural and Forest Meteorology. – 2000. – No.101. – P. 265–289.

Earth systems change over Eastern Europe / Ed. By P. Ya. Groisman, V. I. Lyalko. – Kyiv: “AKADEMPERIODYKA”, 2012. – 488 p. ISBN 978-966-360-195-3.

Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time /S. C. Elmendorf, G. H. R. Henry, R. D. Hollister [et al.] //Ecology Letters. – 2011. – V.15. – No.2. – P. 164–175. doi:10.1111/j.1461-0248.2011.01716.x

Field C. B. Global net primary production: Combining ecology and remote sensing / C. B. Field // Remote Sensing of Environment. – 1995. – No.51. – P.74–88. doi:10.10 16/0034-4257(94)00066-V.

Global land cover mapping from MODIS: algorithms and early results / M. A. Friedl, D.K. McIver, J. C. F. Hodges [et al.]// Remote Sensing of Environment. – 2002. – V.83. – No.1–2. – P. 287–302.

Satellite remote sensing of primary production: An improved production efficiency modeling approach /S. J. Goetz, S. D. Prince, S. N. Goward [et al.] // Ecological Modelling. – 1999. – No. 122. – P. 239–255. doi:10.1016/S0304-3800(99)00140-4.

User’s Guide GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm / F. A. Heinsch, M. Reeves, P. Votava [et al.] // Version 2.0, December 2, 2003; 57 pp.

IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change/ Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden P.J., Dai, X., Maskell, K., Johnson C.A., Eds. –Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2001. – 881 pp.

IPCC, 2007: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change / Parry, M. L. Canziani, O. F. Palutikof, J. P. van der Linden P. J., Hanson, C. E., Eds. – Cambridge University Press, Cambridge, UK, 2007. – 976 pp.

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Stocker, T. F., Qin, D. Plattner, G.-K. Tignor, M. Allen, S. K. Boschung, J. Nauels, A. Xia, Y. Bex V., Midgley, P.M., Eds. – Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. –2013. – 1535 pp.

Jolliffe I. T. Principal Component Analysis / I. T. Jolliffe. –NY: Springer Verlag. – 1986. – 246 pp.

Kostyuchenko Yu. V. Uncertainties in estimation of the vegetation productivity and the formation of carbon balance of the territories using remote sensing / Yu. V. Kostyuchenko, D. M. Movchan, I. G. Artemenko, Yu. G. Bilous // Geoinformation. – 2013. – 3(47). – P. 67–75. (in Ukrainian).

Lakyda P. I. Forest Phytomass in Ukraine / P. I. Lakyda. –Ternopil: Zbruch. – 2002. – 256 pp. (in Ukrainian)

Landsberg J. J. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning / J. J. Landsberg, R. H. Waring // Forest Ecology and Management. – 1997. – No. 95. – P. 209–228.

Lin D. L. Climate warming and biomass accumulation of terrestrial plants: A meta-analysis / D. L. Lin, J. Y. Xia, S. Q. Wan // New Phytologist. – 2010. – No.188. – P. 187–198. doi:10.1111/j.1469-8137.2010.03347.x

Satellite-based terrestrial production efficiency modeling / I. McCallum, W. Wagner, C. Schmullius [et al.] // Carbon Balance and Management. – 2009. – No. 4–8. doi:10.-1186/1750-0680-4-8.

Monteith J. L. Solar radiation and productivity in tropical ecosystem / J. L. Monteith // Journal of Applied Ecology. – 1972. – No. 9. – P. 747–766.

National Atlas of Ukraine / L. G. Rudenko Eds. / Kartographiya: Kyiv, 2008. – 440 pp. (in Ukrainian)

Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a North-South European gradient / J. Peсuelas, C. Gordon, L. Llorens [et al.] // Ecosystems. – 2004. – No. 7. – P. 598–612.

Prince S. D. Global primary production: A remote sensing approach / S. D. Prince, S. N. Goward // Journal of Biogeography. – 1995. – No. 22. – P. 815–835.

Running S. W. Global terrestrial gross and net primary productivity from the Earth observing system / S. W. Running, P. E. Thornton, R. Nemani, J. M. Glassy // In Methods in Ecosystem Science, O. E. Sala, Eds. – New York: Springer, 2000. – 44–57 pp.

Shvidenko A. Current problems of Russian forest mensuration. Methodology and modeling / A. Shvidenko // Forest Inventory and Planning. – 2003. – No.1(31). – P. 41–51.

Shvidenko A. System of models of growth and dynamics of productivity of Russian forests (models of biological productivity) / A. Shvidenko, D. Schepaschenko, S. Nilsson, Y. I. Bouloui // Forestry and Forest Management. – 2004. – No. 2. – P. 40–44.

Standard and Reference Materials for Forest Inventory and Planning in Ukraine and Moldavia / A. Z. Shvidenko [et al.] Eds. – Kiev: Ministry of Forest Management of the Ukrainian SSR, 1989. – 560 pp

Shvidenko A. Z. System of models of growth and dynamics of productivity of forests of Russia (yield tables) / A. Z. Shvidenko, D. G. Schepaschenko, S. Nilsson, Yu. I. Bouloui // Forestry and Forest Management. – 2003. – No. 6. – P. 34–38.

The MODIS Land Cover and Land Cover Dynamics Products / A. H. Strahler, M. Friedl, X. Zhang [et al.] // Presentation at Remote Sensing of the Earth’s Environment from TERRA, L’Aquila, Italy, 2002.

Zhang X., Diverse responses of vegetation phenology to a warming climate / X. Zhang, D. Tarpley, J. T. Sullivan // Geophysical Research Letters. – 2007. – No.34. – L19405, doi:10.1029/2007GL031447.

Zhao M. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses / M. Zhao, S. W. Running, R. R. Nemani // Journal of Geophysical Research. – 2006. – No.111. – G01002. doi:10.1029/2004JG000004.

Downloads

Published

2015-10-07

How to Cite

Movchan, D. (2015). Estimation of forests productivity response on local climatic variations within territory of Ukraine with satellite data using. Ukrainian Journal of Remote Sensing, (6), 24–32. https://doi.org/10.36023/ujrs.2015.6.55

Issue

Section

Earth observation data applications: Challenges and tasks