Utilizing remotely sensed data for atmospheric precipitation analysis in Ukraine

Authors

  • Aleksandr Аpostolov Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Olesia Honchara str., 55-b, Kyiv, 01054, Ukraine https://orcid.org/0000-0003-3470-7613
  • Tetiana Orlenko Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Olesia Honchara str., 55-b, Kyiv, 01054, Ukraine https://orcid.org/0000-0002-4933-7750
  • Lesia Yelistratova Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Olesia Honchara str., 55-b, Kyiv, 01054, Ukraine https://orcid.org/0000-0002-7823-5841

DOI:

https://doi.org/10.36023/ujrs.2024.11.3.268

Keywords:

precipitation, remote sensing data, long-term analysis, GEE

Abstract

Up-to-date, the world, including Ukraine, faces one of the biggest environmental problems: climate change. Studying changes in meteorological indicators is an essential task that receives significant attention. Changes in atmospheric precipitation in Ukraine from 2000 to 2023 were analyzed. The study is based on satellite data to establish trends in precipitation changes.
Nowadays, in the era of big data, selecting the best-performing dataset can be challenging. Current cloud-based technologies, such as Google Earth Engine (GEE), which store both petabytes of data and computational power for processing, offer researchers new opportunities to use and explore available datasets. The GEE service and NOAA satellite data were used to assess the spatiotemporal patterns of precipitation changes in the 21st century. Advanced cloud-based processing techniques for remotely sensed data offer extensive access to a wide range of geospatial products. These include detailed earth surface characteristics and the spatial distribution of climate indicators collected over extended periods.
Additionally, these technologies enable efficient processing and analysis of large-scale datasets, facilitating rapid assessment and monitoring of extensive geographical areas. This capability is crucial for applications in environmental monitoring and climate change studies. Average long-term values of precipitation amounts over 24 years were calculated monthly for the entire year. The research revealed specific trends in seasonal changes in precipitation characteristics during the study period, and the obtained results correspond to the current state of climatic conditions in Ukraine.

References

Apostolov, A. A., Yelistratova, L. A., Romanciuc, I. F., Zakharchuk, I. (2021). Identifying potential landslide areas by employing the erosion relief index and meteorological criteria in Ukraine. Revue Roumaine de Géographie/Romanian Journal of Geography, 65(2), 125–141. http://www.rjgeo.ro/issues/revue%20roumaine%2065_2/apostolov%20et%20al..pdf

Ashouri, H., Hsu, K., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., Prat, O. P. (2015). PERSIANN-CDR: Daily precipitation climate data record from multi-satellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-13-00068.1

Boychenko, S., Voloshchuk, V., Movchan, Y., Serdjuchenko, N., Tkachenko, V., Tyshchenko, O., Savchenko, S. (2016). Features of climate change on Ukraine: Scenarios, consequences for nature and agroecosystems. Proceedings of the National Aviation University, (4), 96–113. http://nbuv.gov.ua/UJRN/Vnau_2016_4_14

Diadin, D., Vystavna, Y. (2020). Long-term meteorological data and isotopic composition in precipitation, surface water, and groundwater revealed hydrologic sensitivity to climate change in East Ukraine. Isotopes in Environmental and Health Studies, 56(2), 136–148. https://doi.org/10.1080/10256016.2020.1732369

Fooladi, M., Golmohammadi, M. H., Rahimi, I., Safavi, H. R., Nikoo, M. R. (2023). Assessing the changeability of precipitation patterns using multiple remote sensing data and an efficient uncertainty method over different climate regions of Iran. Expert Systems with Applications, 224, 119788. https://doi.org/10.1016/j.eswa.2023.119788

IPCC. (2021). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change (pp. 3–32). Cambridge University Press. https://doi.org/10.1017/9781009157896.001

Ivanov, S., Palamarchuk, J., Pyshniak, D. (2009). Precipitation statistics in Ukraine: Sensitivity to informational sources. NATO Science for Peace and Security Series C: Environmental Security, 23–32. https://doi.org/10.1007/978-90-481-2283-7_4

Khodorovskyi, A. Ya., Apostolov, A. A., Yelistratova, L. A., Orlenko, T. A. (2023). Study on irrigated and nonirrigated lands in Ukraine under climate change based on remote sensing data. In C. B. Pande, K. N. Moharir, S. K. Singh, Q. B. Pham, & A. Elbeltagi (Eds.), Climate change impacts on natural resources, ecosystems, and agricultural systems (pp. 391-411). Springer. https://doi.org/10.1007/978-3-031-19059-9_15

Khokhlov, V. M., Borovska, H. O., Zamfirova, M. S. (2020). Climatic changes and their influence on air temperature and precipitation in Ukraine during transitional seasons. Ukrainian Hydrometeorological Journal, 26, 60-67. https://doi.org/10.31481/uhmj.26.2020.05

Klimat Ukraїny: Monografiia [The Climate of Ukraine: Monograph]. (2003). (V. M. Lipinskyi, V. A. Dyachuk, & V. M. Babichenko, Eds.). Raievskoho.

Kogan, F., Adamenko, T., Kulbida, M. (2011). Satellite-based crop production monitoring in Ukraine and regional food security. In F. Kogan, A. Powell, & O. Fedorov (Eds.), Use of satellite and in-situ data to improve sustainability (pp. 185-202). Springer. https://doi.org/10.1007/978-90-481-9618-0_11

Kogan, F., Guo, W. (2011). Early detection and monitoring droughts from NOAA environmental satellites. In F. Kogan, A. Powell, O. Fedorov (Eds.), Use of satellite and in-situ data to improve sustainability (pp. 23–44). Springer. https://doi.org/10.1007/978-90-481-9618-0_2

Koman, M. M. (2020). Using satellite images for the territory of Ukraine. Ukrainian Hydrometeorological Journal, 26, 24-36. https://doi.org/10.31481/uhmj.26.2020.02

Lyalko, V. I., Apostolov, A. A., Elistratova, L. A., Romanciuc, I. F., Zakharchuk, I. V. (2023). Desertification intensity assessment within the Ukraine ecosystems under the conditions of climate change on the basis of remote sensing data. In C. B. Pande, K. N. Moharir, S. K. Singh, Q. B. Pham, A. Elbeltagi (Eds.), Climate change impacts on natural resources, ecosystems, and agricultural systems (pp. 29-47). Springer. https://doi.org/10.1007/978-3-031-19059-9_2

Lyalko, V. I., Romanciuc, I. F., Yelistratova, L. A., Apostolov, A. A., Chekhniy, V. M. (2020). Detection of changes in terrestrial ecosystems of Ukraine using remote sensing data. Journal of Geology, Geography and Geoecology, 29(1), 84-98. https://doi.org/10.30892/gtg.29107-473

Paluba, D., Bliznak, V., Muller, M., Stych, P. (2024). Evaluation of precipitation datasets available in Google Earth Engine on a daily basis for Czechia. 2024 IEEE International Geoscience and Remote Sensing Symposium: Acting for Sustainability and Resilience, 7-12 July, Athens, Greece. https://doi.org/10.13140/RG.2.2.12929.88160

Phan, T. N., Kuch, V., Lehnert, L. W. (2020). Land cover classification using Google Earth Engine and random forest classifier – The role of image composition. Remote Sensing, 12(15), 2411. https://doi.org/10.3390/rs12152411

Rincon-Avalos, P., Khouakhi, A., Mendoza-Cano, O., Lopez-De la Cruz, J. (2022). Evaluation of satellite precipitation products over Mexico using Google Earth Engine. Journal of Hydroinformatics, 24(4), 711-729. https://doi.org/10.2166/hydro.2022.122

Sadeghi, M., Nguyen, P., Naeini, M. R. (2021). PERSIANN-CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavy precipitation studies. Scientific Data, 8, 157. https://doi.org/10.1038/s41597-021-00940-9

Santos, J. A., Belo-Pereira, M., Fraga, H., Pinto, J. G. (2016). Understanding climate change projections for precipitation over western Europe with a weather typing approach. Journal of Geophysical Research: Atmospheres, 121(1170-1189). https://doi.org/10.1002/2015JD024399

Schneider, D. P., Deser, C., Fasullo, J., Trenberth, K. E. (2013). Climate data guide spurs discovery and understanding. Eos, Transactions American Geophysical Union, 94(13), 121–122. https://doi.org/10.1002/2013EO130001

Shyshchenko, P. G., Marynych, O. M. (2003).Fizychna heohrafiia Ukraїny [Physical Geography of Ukraine]. Znannia.

Sorooshian, S., Hsu, K., Braithwaite, D., Ashouri, H., NOAA CDR Program. (2014). NOAA climate data record (CDR) of precipitation estimation from remotely sensed information using artificial neural networks (PERSIANN-CDR), version 1 revision 1. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V51V5BWQ

Wilson, L., New, S., Daron, J., Golding, N. (2021). Climate change impacts for Ukraine. Met Office. https://mepr.gov.ua/wp-content/uploads/2023/07/2_Vplyv-zminy-klimatu-v-Ukrayini.pdf

Zamfirova, M. S., Khokhlov, V. M. (2020). Air temperature and precipitation regime in Ukraine in 2021-2050 by CORDEX model ensemble. Ukrainian Hydrometeorological Journal, 25, 17–27. https://doi.org/10.31481/uhmj.25.2020.02

Downloads

Published

2024-09-30

Issue

Section

Techniques for Earth observation data acquisition, processing and interpretation