Correlation of satellite-based LAI and actual crop yield




crop, actual yield, correlation, Satellite-based LAI


The main objective of this article was to investigate the correlation between actual crop yield and Sentinel-2 Leaf Area Index (LAI) for the further possibility of predict model creating. To do so, the following steps have been done. Step 1 – the dataset of actual crop yield was collected for 2364 fields in Ukraine represented with maize, soy, sunflower, winter wheat, winter rapeseed and winter barley. Step 2 – the dataset of Sentinel-2 LAI was collected for 2016-2018 period according to the actual crop yield available. Step 3 – LAI preprocessing (spatial averaging, temporal interpolation/extrapolation to fill the time series gaps, smoothing time series dynamics, temporal averaging). In order to accomplish the process of filling the gaps for the LAI time series, the regular time series dynamics of LAI with a 1-day interval were created using 4 methods: linear interpolation, spline interpolation, LOCF (Last Observation Carried Forward) and ARIMA (AutoRegressive Integrated Moving Average). The time series smoothing process have been accomplish using the local polynomial regression (LOESS) function with different degrees of smoothing. The LAI dynamics preprocessing step did not strongly affect the improvement of the correlation coefficients. Thus, the smoothing process for the time series LAI dynamics at the 0.1 degree of smoothing according to the LOCF and ARIMA gap-filling methods of improved correlation coefficients by 0.01 on average. Step 4 – actual yield values were related to preprocessed satellite-based LAI (correlation of actual yields and LAI). A strong relationship was not indicated (with averaged by vegetation periods correlation coefficient of 0.4 for maize, 0.52 – soy, 0.39 – sunflower, 0.86 – winter barley, 0.54 – winter rapeseed and 0.5 – winter wheat). Since the reliability of obtained correlation coefficients also depends on how many observed data points were in the sample, the hypothesis test of the "significance of the correlation coefficient" has been performed and shows the significance level of p < 0.05 for all crops except winter barley (there is insufficient evidence to conclude that high correlation coefficient of 0.86 for this crop is significant). The average correlation coefficient for all crops is about 0.5 (p < 0.05) which is considered low/moderate. Thus, an attempt to create a linear crop yield prediction model using only Leaf Area Index (LAI) derived from Sentinel-2 will not be effective (based on the cases considered).


Aboelghar, M., Arafat, S., Saleh, A., Naeem, S., Shirbeny, M., & Belal, A. (2010). Retrieving leaf area index from SPOT-4 satellite data. Egyptian Journal of Remote Sensing, 13, 121–127.

Aboelghar, M., Arafat, S., Abo Yousef, M., El-Shirbeny, M., Naeem, S., Massoud, A., & Saleh, N. (2011). Using SPOT data and leaf area index for rice yield estimation in Egyptian Nile delta. The Egyptian Journal of Remote Sensing and Space Science, 14, 81–89.

Asner, G. P., Scurlock, J. M. O., Hicke, J. A. (2003). Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Glob. Ecol. Biogeogr., 12, 191–205.

Baret, F., Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote. Sens. Environ., 35, 161–173.

Baghzouz, M., Devitt, D. A., Fenstermaker, L., Young, M. H. (2010). Monitoring Vegetation Phenological Cycles in Two Different Semi-Arid Environmental Settings using a Ground-Based NDVI System: A Potential Approach to Improve Satellite Data Interpretation. Remote. Sens., 2, 990–1013.

Broge, N., Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote. Sens. Environ., 76, 156–172.

Campos-Taberner, M., García-Haro, F., Camps-Valls, G., Muedra, G. A. G., Nutini, F., Crema, A., & Boschetti, M. (2016). Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring. Remote. Sens. Environ., 187, 102–118.

Charbonnier, F. (2013). Measuring and Modeling Light, Water and Carbon Budgets and Net Primary Productivity in a Coffee-based Agroforestry System of Costa Rica. Ph.D. Thesis, Université de Lorraine, Lorraine, France.

Chen, J. M., Black, T. A. (1992). Defining leaf area index for non-flat leaves. Plant Cell Environ., 15, 421–429.

Cleveland, W. S., Grosse, E., Shyu, W. M. (2017). Local regression models. In Statistical models in S. Routledge (pp. 309–376).

Curnel, Y., Wit, A. J. W., Duveiller, G., & Defourny, P. (2011). Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment. Agricultural and Forest Meteorology, 151, 1843–1855.

Deering, D. W. (1978). Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors. Ph. D. Thesis, Texas A&M Universtiy, College Station, TX, USA.

Dente, L., Satalino, G., Mattia, F., Rinaldi, M. (2008). Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield. Remote. Sens. Environ., 112, 1395–1407.

Fang, H., Liang, S., Hoogenboom, G. (2011). Integration of MODIS LAI and vegetation index products with the CSM–CERES–Maize model for corn yield estimation. Int. J. Remote Sens., 32, 1039–1065.

Fassnacht, K. S., Gower, S. T., MacKenzie, M. D., Nordheim, E. V., & Lillesand, T. M. (1997). Estimating the leaf area index of North Central Wisconsin forests using the landsat thematic mapper. Remote. Sens. Environ., 61, 229–245.

Féret, J.-B., Gitelson, A., Noble, S., Jacquemoud, S. (2017). PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote. Sens. Environ., 193, 204–215.

He, L., Wang, R., Mostovoy, G., Liu, J., Chen, J. M., Shang, J., Liu, J., McNairn, H., & Powers, J. (2021). Crop Biomass Mapping Based on Ecosystem Modeling at Regional Scale Using High Resolution Sentinel-2 Data. Remote Sensing, 13(4), 806, 1–23.

Hinkle, D. E., Wiersma, W., Jurs, S. G. (2003). Applied statistics for the behavioral sciences, 5th ed.; Boston, Mass. : Houghton Mifflin, USA.

Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote. Sens. Environ., 25, 295–309.

Huete, A., Justice, C., van Leeuwen, W. (1996). MODIS Vegetation Index (MOD13), EOS MODIS Algorithm; Theoretical basis document; NASA Goddard Space Flight Center: Greenbelt, MD, USA.

Huete, A. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote. Sens. Environ., 59, 440–451.

Jarlan, L., Balsamo, G., Lafont, S., Beljaars, A., Calvet, J. C., & Mougin, E. (2008). Analysis of leaf area index in the ECMWF land surface model and impact on latent heat and carbon fluxes: Application to West Africa. J. Geophys. Res. Space Phys., 113, 113.

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., De Jeu, R. et al. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951–954.

Kayad, A., Rodrigues, Jr. F. A., Naranjo, S., Sozzi, M., Pirotti, F., Marinello, F., Schulthess, U., Defourny, P., Gerard, B., & Weiss, M. (2022). Radiative transfer model inversion using high-resolution hyperspectral airborne imagery-Retrieving maize LAI to access biomass and grain yield. Field Crops Research, 282, 1–12.

Kryvobok, O., Kryvoshein, O., Adamenko, T. (2018). Peculiarities of technological adaptation of the cgms system for agricultural crops monitoring in Ukraine. Ukrainian hydrometeorological journal, 22, 64–79.

Kryvoshein, O., Kryvobok, O., Adamenko, T. (2020). Satellite-based system of area estimation for main agricultural crops of ukraine. Ukrainian hydrometeorological journal, 26, 78–90.

Liu, Y., Su, L., Wang, Q., Zhang, J., Shan, Y., & Deng, M. (2020). Comprehensive and quantitative analysis of growth characteristics of winter wheat in China based on growing degree days. Advances in Agronomy, 159, 237–273.

Ma, G., Huang, J., Wu, W., Zou, J., & Wu, S. (2013). Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield. Mathematical and Computer Modelling, 58, 634–643.

Mourad, R., Jaafar, H., Anderson, M., & Gao, F. (2020). Assessment of leaf area index models using harmonized Landsat and Sentinel-2 surface reflectance data over a semi-arid irrigated. Remote Sens., 12(19), 3121.

Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R. et al. (2002). Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote. Sens. Environ., 83, 214–231.

Peng, X., Han, W., Ao, J., & Wang, Y. (2021). Assimilation of LAI derived from UAV multispectral data into the SAFY model to estimate maize yield. Remote Sensing, 13(6), 1094.

Reyes-González, A., Kjaersgaard, J., Trooien, T., Sánchez, D. G. R., Sánchez-Duarte, J. I., Preciado-Rangel, P., & Fortis-Hernandez, M. (2019). Comparison of Leaf Area Index, Surface Temperature, and Actual Evapotranspiration Estimated using the METRIC Model and In Situ Measurements. Sensors, 19, 1857.

Taugourdeau, S., Le Maire, G., Avelino, J., Jones, J. R., Ramirez, L. G., Quesada, M. J. Charbonnier, F., Gómez-Delgado, F., Harmand, J. M., Rapidel, B. et al. (2014). Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry. Agric. Ecosyst. Environ., 192, 19–37.

Tewes, A., Hoffmann, H., Krauss, G., Schäfer, F., Kerkhoff, C., & Gaiser, T. (2020). New approaches for the assimilation of LAI measurements into a crop model ensemble to improve wheat biomass estimations. Agronomy, 10(3), 446.

Van den Hurk, B. J., Viterbo, P., & Los, S. O. (2003). Impact of leaf area index seasonality on the annual land surface evaporation in a global circulation model. J. Geophys. Res. Space Phys., 108, 108.

Viña, A., Gitelson, A., Nguy-Robertson, A. L., & Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote. Sens. Environ., 115, 3468–3478.

Weiss, M., Baret, F. (2016). S2ToolBox Level 2 products: LAI, FAPAR, FCOVER, Version 1.1. In ESA Contract nr 4000110612/14/I-BG; INRA Avignon: Paris, France.

Yan, G., Hu, R., Luo, J., Weiss, M., Jiang, H., Mu, X., Xie, D., & Zhang, W. (2019). Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. Agricultural and forest meteorology, 265, 390–411.






Earth observation data applications: Challenges and tasks