Modeling of radar scattering by aeolian desert landforms

Authors

  • Oleksandr Matweev O. Ya. Usikov Institute for Radio Physics and Electronics of the National Academy of Sciences of Ukraine, 12, Ac. Proskura st., Kharkov, 61085, Ukraine. https://orcid.org/0000-0003-4811-1191
  • Sergey Velichko O. Ya. Usikov Institute for Radio Physics and Electronics of the National Academy of Sciences of Ukraine, 12, Ac. Proskura st., Kharkov, 61085, Ukraine. https://orcid.org/0000-0002-2579-2134
  • Dmytry Bychkov O. Ya. Usikov Institute for Radio Physics and Electronics of the National Academy of Sciences of Ukraine, 12, Ac. Proskura st., Kharkov, 61085, Ukraine. https://orcid.org/0000-0002-1557-7174
  • Viktor Ivanov O. Ya. Usikov Institute for Radio Physics and Electronics of the National Academy of Sciences of Ukraine, 12, Ac. Proskura st., Kharkov, 61085, Ukraine. https://orcid.org/0000-0001-5264-9440
  • Valery Tsymbal O. Ya. Usikov Institute for Radio Physics and Electronics of the National Academy of Sciences of Ukraine, 12, Ac. Proskura st., Kharkov, 61085, Ukraine. https://orcid.org/0000-0001-9111-0085

DOI:

https://doi.org/10.36023/ujrs.2023.10.1.226

Keywords:

radar remote sensing, desert monitoring, anomalously narrowly-directional backscattering, sand electrified layer

Abstract

In order to identify the origin of the effect of anomalously narrowly-directional backscattering of radio waves (ANDBR) of the X-band in desert areas, the work describes a complex analysis of many years of research in the Sahara desert regions. According to the results of the analysis, which was carried out using the SAR radar data of the Envisat-1 satellite, results of contact measurements, weather conditions and taking into account modern theories, the characteristics of the scattering of radio waves by the aeolian landforms of the desert were modeled. A new model of anomalous backscatter is proposed, according to which the main scatterer towards the radar is a grid formed by the wind from electrified saltons and reptons at a height of 2–3 cm from the surface and repeating the landform of ripples and barchans. The new model made it possible to explain the main features of experimental studies of the ANDBR effect. Namely: the dependence of the normalized radar cross-section (NRCS) of the researched terrain on the near-surface wind speed up to 10 m/s with opposite directions of the wind and radar survey vectors, as well as with their mutual azimuthal deviation of ±45 degrees. By using the new model, satellite monitoring of the near-surfacelayer moisture of the Earth desert regions at 3 cm and 5.6 cm radio wave length swith radar viewing angles is proposed.

References

Al-Hashemi, H. M. B., & Al-Amoudi, O. S. B. (2018). A review on the angle of repose of granular materials. Powder Technology, 330, 397–417. DOI: https://doi.org/10.1016/j.powtec.2018.02.003.

Bagnold, R. A. (1941). The Physics of Blown Sand and Desert Dunes. London, U.K.: Methuen.

Bychkov, D. M., Ivanov, V. K., Matveyev, A. Ya., Tsymbal, V. N., & Yatsevich, S. Ye. (2020a). Space-borne radar observation of near-surface wind effecton anomalously highly-directional backscattering of radio waves from aeolianprocesses of sand and dust transporting in desert regions. Radiofiz. elektron., 25(1), 21–27. DOI: https://doi.org/10.15407/rej2020.01.021.

Bychkov, D. M., Ivanov, V. K., Matveyev, A. Ya., Tsymbal, V. N., & Yatsevich, S. Ye. (2020b). Space-borne radar observation of near-surface wind effect on anomalously highly-directional backscattering of radio waves from Aeolian processes of sand and dust transporting in desert regions. Ukrainian Journal of Remote Sensing, 24, 4–8. DOI: https://doi.org/10.36023/ujrs.2020.24.162.

Greeley, R., Blumberg, D. G., & Williams, S. H. (1996). Field Measurements of the Flux and Speed of Wind-Blown Sand. Sedimentology, 43, 41–52.

Herrmann, L., Stahr, K., & Jahn, R. (1999).The Importance of Source Region Identification and Their Properties for Soil-Derived Dust: the Case of Harmattan Dust Sources for Eastern West Africa. Contributions to Atmospheric Physics, 72, 141–150.

Ho, T. D., Valance, A., Dupont, P., & Ould El Moctar, A. (2014). Aeolian sand transport: Length and height distributions of saltation trajectories. Aeolian Research, 12, 65–74.

Ivanov, V. K. (Eds.) (2018). Radar monitoring of natural and anthropogenic hazardous phenomena. (Part 2). Lambert Academic Publishing, Germany. Retrieved from https: //www.lappublishing.com.

Ivanov, V. K., Matveev, A. Ya., Tsymbal, V. N., & Yatsevich, S. Ye. (2015a). Radar investigations of the aeolian sand and dust transporting manifestations in desert areas. Telecommun. Radio Eng., 74(14), 1269–1283.

Ivanov, V. K., Matveev, A. Ya., Tsymbal, V. N., & Yatsevich, S. Ye. (2015b). Radar monitoring of aeolian sand and dust transporting manifestations in desert areas. Fiz. Osnovy Priborostr., 4(4), 46–59.

Ivanov, V. K., Matveyev, A. Ya., Tsymbal, V. N., Yatsevich, S. Ye., & Bychkov, D. M. (2016). Spaceborne radar identification of desert regions as suppliers of dust into the atmosphere. Ukrainian Journal of Remote Sensing, 11, 39–47. Retrieved from https://ujrs.org.ua/ujrs/article/view/87/pdf.

Kok, J. F, Parteli, E. J. R., Michaels, T. I., & Bou Karam, D. (2012). The Physics of Wind-Blown Sand and Dust. Reports on Progress in Physics. 75, 106901.

Kok, J. F., & Renno, N. O. (2008). Electrostatics in wind-blown sand. Physycal Review Letters, 100, 014501. DOI: https://doi.org/10.1103/PhysRevLett.100.014501.

Lancaster, N. (2009). Aeolian Features and Processes. In Young, R. & Norby, L. Geological Monitoring, 1–25, Boulder, Colorado, Geological Society of America, DOI: https://doi.org/10.1130/2009.monitoring(01).

Malinovskaya, E. A. (2019). Transformation of aeolian relief forms under wind influence. Izvestiya RAN, Atmospheric and Oceanic Physics, 53(1), 54–64.

McHone, J. F., Greely, R., & Blumberg, D. (1996). SIR-C/X-SAR Radar Studies; Impact and Aeolian Features, Borkov Region Northern Chad. Lunar and Planetary Science, 27, 849. Retrieved from http://adsabs.harvard.edu/full/1996LPI....27..849M.

Middleton, N. J., & Goudie, A. S. (2001). Saharan dust: Sources and trajectories. Transactions of the Institute of British Geographers, 26(2), 165. DOI: https://doi.org/10.1111/1475.

Namikas, S. L. (2003). Field Measurement and Numerical Modeling of Aeolian Mass-Flux Distributions on a Sandy Beach. Sedimentology, 50, 303–326.

Ozer, P. (2006). Dust in the Wind and Public Health: Example From Mauritania. International Conference Desertification, Migration, Health, Remidiation and Local Governance. Royal Academy for Overseas Sciences United Nations Brussels. 55–74.

Prandtl, L. (1935). The mechanics of viscous fluids. Aerodynamic Theory, III(G), 34, Berlin: Springer.

Pye, K., & Tsoar, H. (2009) Aeolian Sand and Sand Dunes. Berlin. Heidelberg: Springer. DOI: https://doi.org/10.1007/978-3-540-85910-9.

Schmidt, D. S., Schmidt, R. A., & Dent, J. D. (1998). Electrostatic Force on Saltating Sand. Journal of Geophysical Research, 103(8), 8997–9001.

Stephen, H., & Long, D. G. (2005). Microwave Backscatter Modeling of Erg Surfaces in the Sahara Desert. IEEE Trans. Geosci. and Rem. Sens., 43(2). 238–247.

Stow, C. D. (1969). Dust and Sand Storm Electrification. Weather, 24(4), 134–137.

Tajudin, M. T. J. (2014). Study and design of reconfigurable antennas using plasma medium. Universite Rennes 1. Retrieved from https://tel.archives-ouvertes.fr/tel-01060295.

Williams, K. K., & Greeley, R. (2004). Laboratory and field measurements of the modification of radar backscatter by sand. Remote Sensing of Environment, 89, 29–40.

Zolotokrylin, A. N. (2003). Desertification climatique. Moscow: Nauka.

Downloads

Published

2023-04-03

Issue

Section

Techniques for Earth observation data acquisition, processing and interpretation