Remote Sensing Monitoring of Anthropogenic Changes in the Desenka River Channel (Kyiv, Ukraine)

  • Yue Zheng Yancheng Polytechnic College, 224006, No. 285, Jiefang Rd. Yandu District, Yancheng, Jiangsu Province, China https://orcid.org/0000-0003-4690-098X
  • Natalia Sheviakina Institute of Telecommunications and Global Information Space, National Academy of Sciences of Ukraine, 03186, Chokolovskiy blv. 13, Kyiv, Ukraine https://orcid.org/0000-0002-5984-5580
  • Snizhana Zagorodnia Institute of Telecommunications and Global Information Space, National Academy of Sciences of Ukraine, 03186, Chokolovskiy blv. 13, Kyiv, Ukraine https://orcid.org/0000-0002-4332-4211
  • Olha Tomchenko Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, 01054, Oles Honchar str., 55-B, Kyiv, Ukraine https://orcid.org/0000-0001-6975-9099
  • Igor Radchuk Institute of Telecommunications and Global Information Space, National Academy of Sciences of Ukraine, 03186, Chokolovskiy blv. 13, Kyiv, Ukraine https://orcid.org/0000-0003-4999-1258

Abstract

The article is devoted to developing an universal methodological apparatus of ecological monitoring and practical assessment of the state of hydroecosystems to determine the nature of the anthropogenic impact. The authors analyzed the transformation of the Desenka River channel (Kyiv, Ukraine) in the 1965 – 2021 years. The primary attention is paid to changes in the coastline of Kyiv to determine the nature of the anthropogenic impact on the study area. The authors improved the technology of monitoring the dynamics of the water regime of the riverbed by constructing bathymetric maps based on the results of hydroacoustic measurements and the space imagery interpretation.
The complex use of methods for selecting and processing information was applied through the use of GIS technologies (thematic classification of remote sensing results in the conditions of data exchange of ground-based verifications with independent features of objects). The results are presented in a way that is easy to interpret. It was found that the main reason for the change in area is sand mining. The bathymetric survey allowed to specify the maximum depth of the reservoir, which is 16.8 m. It was determined that the relief of the bottom is typical for a quarry. The river's depth in its central part increases from west to east in proportion to the increase in the width of the reservoir. The study found that sand was mined in the same place, washing away huge underwater quarries and forming numerous silt alluviums. According to the results of the analysis of changes in areas presented in this study, the authors proved that uncontrolled sand mining has a negative impact on the biotic stability of landscapes and causes irreparable damage to the environment. The effectiveness of remote sensing methods for determining the ecological status of hydroecosystems is proved. The presented studies indicate the need to stabilize the ecological balance of the river ecosystem, take appropriate measures to increase the productivity of hydrolandscapes, improve the environment and ensure the environmental safety of the Desenka River and coastal areas.

Author Biographies

Yue Zheng, Yancheng Polytechnic College, 224006, No. 285, Jiefang Rd. Yandu District, Yancheng, Jiangsu Province, China

Science and Technology Office Clerk, Engineer Title

Natalia Sheviakina, Institute of Telecommunications and Global Information Space, National Academy of Sciences of Ukraine, 03186, Chokolovskiy blv. 13, Kyiv, Ukraine

PhD, Senior Research Scientist

Snizhana Zagorodnia , Institute of Telecommunications and Global Information Space, National Academy of Sciences of Ukraine, 03186, Chokolovskiy blv. 13, Kyiv, Ukraine

PhD, Senior Research Scientist

Olha Tomchenko, Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine, 01054, Oles Honchar str., 55-B, Kyiv, Ukraine

PhD, Research Scientist

Igor Radchuk , Institute of Telecommunications and Global Information Space, National Academy of Sciences of Ukraine, 03186, Chokolovskiy blv. 13, Kyiv, Ukraine

PhD, Senior Research Scientist

References

Allouis, T.; Bailly, J.S.; Pastol, Y.; Le Roux, C. (2010) Comparison of LiDAR waveform processing methods for very shallow water bathymetry using Ra-man, near-infrared and green signals. Earth. Surf. Proc. Landf, 35, p.640–650.

Batog S.V. (2015) Hydrodynamic characteristics of reservoirs in Kyiv. Hydrology, hydrochemistry and hydroecology. Vol. 2. 55-68. http://nbuv.gov.ua/UJRN/glghge_2015_2_8.

Dubrovsjkyj Ju V., Dubrovsjka L. D., Kotenko A. Gh., Tytar V. M., Cvelykh O. M. (2008) Zberezhennja ostroviv okolycj Kyeva jak vazhlyvoji skladovoji dniprovsjkogho ekokorydoru. Dniprovsjkyj ekologhichnyj korydor, Kyiv, Wetlands international Black Sea Programme, р. 78-85.

Jianwei Wei, Menghua Wang, Zhongping Lee, Henry O.Briceño, Xiaolong Yu, Lide Jiang, Rodrigo Garcia, Junwei Wang, Kelly Luis. (2020) Shallow water bathymetry with multi-spectral satellite ocean color sensors: Leveraging temporal variation in image data. Remote Sensing of Environment. Volume 250, 1 December 2020, 112035 https://doi.org/10.1016/j.rse.2020.112035

Merwade, V.M.; Maidment, D.R.; Goff, J.A. (2006) Anisotropic considerations while interpolating river channel bathymetry. J. Hydrol, 331, p.731–741.

USGS science for a changing world: EarthExplorer. Retrieved from https://earthexplorer.usgs.gov/

Vyshnevskyi V., Shevchuk, S. (2018) Use of remote sensing data in investigations of ecological state of water bodies in urban area of Kyiv city. In: 21st International Symposium The Environment and the Industry. doi:10.21698/simi.2018.fp37

Wesley J, Moses and, David Miller. (2019) Editorial for the Special Issue “Remote Sensing of Water Quality”. Remote Sens, 11(18), 2178. https://doi.org/10.3390/rs11182178.

Xuechun Zhang, Yi Ma, Jingyu Zhang (2020) Shallow Water Bathymetry Based on Inherent Optical Properties Using High Spatial Resolution Multispectral Imagery. Remote Sens, 12(18), 3027. https://doi.org/10.3390/rs12183027

Wikipedia: Кеу Hole. Retrieved from https://uk.wikipedia.org/wiki/KeyHole

Gharasym A., Bodnar P., Keljm N., Drozdova Je. (2019) Zoloto Dnipra. Sajt texty.org.ua. Retrieved from https://texty.org.ua/d/2019/sand/

Ghlobaljni Cili stalogho rozvytku na period do 2030 roku. Chysta voda ta nalezhni sanitorni umovy. Retrieved from https://www.ua.undp.org/content/ukraine/uk/home/sustainable-development-goals/goal-6-clean-water-and-sanitation.html

Kyiv na kartakh “Mashyna chasu i prostoru” Retrieved from https://museum.kpi.ua/map/

Malets O., Mazurkevych L. O., Tomchenko O. V. (2017) Doslidzhennja dynamiky zmin bereghovoji liniji ostroviv Dnipra v mezhakh Kyjeva (na prykladi ostrova Velykyj Pivnichnyj). Visnyk Kyjivsjkogho nacionaljnogho universytetu imeni Tarasa Shevchenka. Gheoghrafija. Kyjivsjkyj nacionaljnyj universytet imeni Tarasa Shevchenka. 1(66)/2(67), p. 84-88.

Pro-Consulting (2021) Analiz rynku richkovogho pisku v Ukrajini za 2018 – 1pol. 2021 rokiv. Retrieved from https://pro-consulting.ua/ua/issledovanie-rynka/analiz-rynka-rechnogo-peska-v-ukraine-za-2018-1-pol-2021-gg-2021-god

Parnikoza I. Yu. (2021) Kyjivsjki ostrovy ta pryberezhni urochyshha na Dnipri - poghljad krizj viky. Retrieved from https://www.myslenedrevo.com.ua/uk/Sci/Kyiv/Islands/History/kyiv-capitalism-1850-1917/dnieper-regulation-1850-1917.html

Pro rishennja Rady nacionaljnoji bezpeky i oborony Ukrajiny vid 30 lypnja 2021 roku "Pro stan vodnykh resursiv Ukrajiny": Ukaz Prezydenta Ukrajiny vid vid 13 serpnja 2021 roku 357/2021. Retrieved from https://zakon.rada.gov.ua/laws/show/357/2021#Text

Rusanivsjki sady: oficijnyj sajt ob'jednanykh sadovykh tovarystv Rusanivsjkyj masyv. Retrieved from https://sady.kiev.ua

Tomchenko O.V., Mazurkevych L.O., Malets O.A., Pidlisecjka I.O. (2018) Doslidzhennja dynamiky zminy ploshh ostroviv kyjivsjkoji ghrupy richky Dnipro. Visnyk Kyjivsjkogho nacionaljnogho universytetu imeni Tarasa Shevchenka. Gheoghrafija, 4(73), р.55-62.

Udod V.M., Trofimovych V.V., Voloshkina O.S., Trofymchuk O.M. (2007) Tekhnoekologhija: navchaljnyj posibnyk. 195 p.

Section
Earth observation data applications: Challenges and tasks