Spatio-temporal trend analysis of vegetation productivity in Europe using MODIS data sets

  • Dmytro Movchan Scientific Centre for Aerospace Research of the Earth Institute of Geological Science National Academy of Sciences of Ukraine, Kyiv, Ukraine http://orcid.org/0000-0003-0176-7740
Keywords: vegetation productivity, climate change, remote sensing, carbon stock, MODIS

Abstract

Some previous studies showed that ecosystem biogeochemical processes were significantly affected by variation of the temperature regime. For example, experimental warming led to photosynthesis intensification and increasing of the vegetation productivity and biomass accumulation (Elmendorf et al. 2012; Lin et al. 2010; Lu et al. 2013; Wu et al. 2011). However, such association is not so clear under natural conditions (Mohamed et al. 2004). This study provides the results of a pixel-wise trend analysis which has been performed to identify regional trends in the vegetation productivity for the European territory over the last 14 years. The moderate-resolution imaging spectroradiometer (MODIS) time series data have been used to analyse net primary productivity (NPP) trends. The changes in terrestrial carbon stock caused by the dynamics of vegetation productivity have been estimated. The negative trend of the vegetation productivity was found for Eastern Europe. It was found that the increased summer temperatures negatively influenced the vegetation productivity in Western, Eastern and Southern Europe. The findings suggest that the mean summer temperatures have reached a threshold in Southern Europe and its subsequent growth would lead to reducing the vegetation productivity. At the same time in the northern regions, the threshold has not been reached; therefore, summer temperatures increasing will stimulate the growth of vegetation. Analysing the changes for different types of vegetation it can be noted that the carbon stocks of agricultural land have been decreased by 2.67 Mt C, while forests and savannah areas have positive dynamic (the carbon stocks have been increased by 1.64 and 3.7 Mt C respectively). Summary results for the whole European region indicate a positive trend (2.67 Mt) of C stock in the terrestrial vegetation.

References

Anderson, M.C., Norman J.M., Meyers T.P., and Diak G.R. (2000). An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light-use efficiency. Agricultural and Forest Meteorology, 101, 265−289, doi:10.1016/S0168-1923(99)00170-7.

Bauerle, W.L., Oren R, Way D.A., Qian S.S., Stoy P.C., Thornton P.E., Bowden J.D., Hoffman F.M., and Reynolds R.F. (2012). Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proceedings of the National Academy of Sciences of the United States of America, 109, 8612–8617, doi:10.1073/pnas.1119131109.

Bonnaventure, P.P., and Lewkowicz A.G. (2013). Impacts of mean annual air temperature change on a regional permafrost probability model for the southern Yukon and northern British Columbia, Canada. The Cryosphere, 7, 935–946, doi:10.5194/tc-7-935-2013.

Bun’, R.A (Eds.) (2004). Information technologies for greenhouse gas inventories and prognosis of the carbon budget of Ukraine. Lviv, Ukrainian Academy of Printing, 376 pp. (in Ukrainian).

Chertov, O., Bhatti J.S., and Komarov A. (2010). Impact of Temperature Increase and Precipitation Alteration at Climate Change on Forest Productivity and Soil Carbon in Boreal Forest Ecosystems in Canada and Russia: Simulation Approach with the EFIMOD Model, In: Climate Change and Variability, S. Simard (eds), ISBN: 978-953-307-144-2. https://doi.org/10.5772/9814

Clark, D.B., Olivas P.C., Oberbauer S.F., Clark D.A., and Ryan M.G. (2008). First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity. Ecology Letters, 11, 163–172, doi:10.1111/j.1461-0248.2007.01134.x.

Corlett, R.T. (2011). Impacts of warming on tropical lowland rainforests. Trends in Ecology & Evolution, 26, 606–613, doi:10.1016/j.tree.2011.06.015.

de Jong, R., Schaepman M.E., Furrer R., de Bruin S., and Verburg P.H. (2013). Spatial relationship between climatologies and changes in global vegetation activity. Global Change Biology, 19, 1953–1964, doi:10.1111/gcb.12193.

Dee, D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U., et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597, doi:10.1002/qj.828.

Elmendorf, S.C., Henry G.H.R., Hollister R.D., Björk R.G., Bjorkman A.D., Callaghan T.V., Collier L.S. et al. (2011). Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 15, 164–175, doi:10.1111/j.1461-0248.2011.01716.x.

Frank D., Reichstein M., Bahn M., Thonicke K., Frank D., Mahecha M.D., Smith P., et al. (2015). Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 21(8), 2861–2880, doi:10.1111/gcb.12916.

Gornall, J., Betts R., Burke E., Clark R., Camp J., Willett K., and Wiltshire A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century, Philosophical Transactions of the Royal Society B, 365, 2973–2989, doi:10.1098/rstb.2010.0158.

Groisman, P, and Lyalko V., eds. (2012). Earth Systems Change over Eastern Europe. Kyiv, Akademperiodyka, 488 p., ISBN 978-966-360-195-3. https://doi.org/10.15407/akademperiodyka.195.488

Hartmann, D.L., Klein Tank A.M.G., and Rusticucci M. (2013). Observations: Atmosphere and Surface, In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 159−254. https://doi.org/10.1017/cbo9781107415324.008

Heimann, M., and Reichstein M. (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289−292, doi:10.1038/nature06591.

Heinsch, F.A., Reeves M., Votava P., Kang S., Milesi C., Zhao M., Glassy J. et al. (2003). User’s Guide GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm. Version 2.0, December; 57 pp.

Houghton, R. (2005). Aboveground forest biomass and the global carbon balance. Global Change Biology, 11, 945−958, doi:10.1111/j.1365-2486.2005.00955.x.

IPCC (2001) The Scientific Basis, In: Climate Change 2001: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K., Johnson C.A. (eds), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp. https://doi.org/10.1002/qj.200212858119

IPCC (2007) Impacts, Adaptation and Vulnerability, In: Climate Change 2007: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J., Hanson C.E. (eds), Cambridge University Press, Cambridge, UK; 976pp. https://doi.org/10.2134/jeq2008.0015br

IPCC (2013) The Physical Science Basis, In: Climate Change 2013: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T.F., Qin D., Plattner G-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (eds), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; 1535 pp. doi:10.1017/CBO9781107415324.

Johnsen, K.H., Keyser T.L., Butnor J.R., Gonzalez-Benecke C.A., Kaczmarek D.J., Maier C.A., McCarthy H.R., Sun G. (2013). Productivity and Carbon Sequestration of Forests in the Southern United States, In: Climate Change Adaptation and Mitigation Management Options: A Guide for Natural Resource Managers in Southern Forest Ecosystems, CRC Press, 193-247.

Lin DL, Xia J, Wan S et al. (2010). Climate warming and biomass accumulation of terrestrial plants: A meta-analysis. New Phytologist, 188, 187–198, doi:10.1111/j.1469-8137.2010.03347.x.

Lu, M., Zhou X., Yang Q., Li H., Luo Y., Fang C., Chen J., Yang X., and Li B. (2013). Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology, 94, 726–738, doi:10.1890/12-0279.1.

McCallum, I., Wagner W., Schmullius C., Shvidenko A., Obersteiner M., Fritz S., and Nilsson S. (2009). Satellite-based terrestrial production efficiency modeling. Carbon Balance and Management, 4−8, doi:10.1186/1750-0680-4-8.

Mohamed, M.A., Babiker I.S., Chen Z.M., Ikeda K., Ohta K., and Kato K. (2004). The role of climate variability in the inter-annual variation of terrestrial net primary production (NPP). Science of the Total Environment, 332, 123–137, doi:10.1016/j.scitotenv.2004.03.009.

Movchan, D., and Kostyuchenko Yu.V. (2015). Regional dynamics of terrestrial vegetation productivity and climate feedbacks for territory of Ukraine. International Journal of Geographical Information Science, 29(8), 1490–1505, doi: 10.1080/13658816.2015.1051985.

Mu, Q., Zhao M., and Running S.W. (2011). Evolution of hydrological and carbon cycles under a changing climate, Hydrological Processes, 25(26), 4093–4102, doi:10.1002/hyp.8367.

Piao, S., Fang J., Zhou L., Zhu B., Tan K., and Tao S. (2005). Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochemical Cycles, 19(2), GB2027, doi:10.1029/2004GB002274.

Piao, S., Sitch S., Ciais P., Friedlingstein P., Peylin P., Wang X., Ahlström A. et al. (2013). Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 19(7), 2117–2132 doi:10.1111/gcb.12187.

Piao, S., Friedlingstein P., Ciais P., Viovy N., and Demarty J. (2007). Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles, 21, 49–53 doi:10.1029/2006gb002888.

Porter, J.R., and Semenov M.A. (2005). Crop responses to climatic variation, Philosophical Transactions of the Royal Society B, 360, 2021–2035, doi:10.1098/rstb.2005.1752.

Running, S.W., Thornton P.E., Nemani R., and Glassy J.M. (2000). Global terrestrial gross and net primary productivity from the Earth observing system, In: Methods in Ecosystem Science, (esd Sala OE et al), Springer, New York, 44–57 https://doi.org/10.1007/978-1-4612-1224-9_4

Strahler, A.H., Friedl M., Zhang X., Hodges J., Schaaf C., Cooper A., and Baccini A. (2002). The MODIS Land Cover and Land Cover Dynamics Products, Presented at Remote Sensing of the Earth’s Environment from TERRA, L’Aquila, Italy https://doi.org/10.1016/s0034-4257(02)00078-0

Wu, Z., Dijkstra P., Koch G.W., Peñuelas J., and Hungate B.A. (2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Global Change Biology, 17, 927–942 doi:10.1111/j.1365-2486.2010.02302.x.

Zhang, X., Tarpley D., and Sullivan J.T. (2007). Diverse responses of vegetation phenology to a warming climate, Geophysical research letters, 34, L19405, doi:10.1029/2007GL031447.

Zhao, M., Running S.W., and Nemani R.R. (2006). Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. Journal of Geophysical Research, 111, G01002, doi:10.1029/2004JG000004.

Zhou, L., Tucker C.J., Kaufmann R.K., Slayback D., Shabanov N.V., and Myneni R.B. (2001). Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research: Atmospheres, 106(D17), 20069–20083, doi:10.1029/2000JD000115.

Section
Earth observation data applications: Challenges and tasks