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____________________________________________________________________________________________________________________________ 

 

Speckle noise inherent to synthetic aperture radar (SAR) imagery degrades image quality and complicates automated analysis in  Earth 

observation applications. Quantitative assessment of despeckling results requires computing quality metrics against reference images, 

which are unavailable in operational SAR scenarios. This paper presents a method for a priori prediction of filtered Sentinel-1 SAR image 

quality metrics before applying speckle noise filters. Unlike existing approaches predicting relative quality improvement, the proposed 
method predicts absolute values of five metrics (PSNR, WSNR, SSIM, MS-SSIM, FSIM) for a specific filter, enabling direct comparison 

and rational filter selection. The methodology employs transfer learning of DenseNet-121 convolutional neural network, pre-trained on 

ImageNet, adapted for single-channel SAR inputs through architectural modifications including input layer transformation, pooling 
optimization, and regression head replacement. A novel synthetic data generation pipeline utilizes histogram matching of Sentinel-2 

optical images with Sentinel-1 SAR references to create training samples preserving ground truth. Dynamic gamma-distributed speckle 

noise addition with variable ENL ∈ [2, 6] enhances data variability and model robustness. Experiments with six classical filters (Gamma 

MAP, Lee, Enhanced Lee, Frost, SRAD, Kuan) demonstrate high prediction accuracy across all filter-metric combinations. The 

coefficient of determination R² reaches 0.997 for best combinations and exceeds 0.97 for most of the 30 trained models. Mean absolute 

prediction errors remain below 0.29 dB for PSNR and 0.014 for SSIM across all tested configurations. The approach enables a p riori 

quality prediction without reference images, allowing optimization of SAR processing workflows and resource planning before resource-
intensive despeckling.  

Keywords: Speckle noise, Sentinel-1, image quality metrics, DenseNet-121, transfer learning. 
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Introduction 

 
Synthetic aperture radar (SAR) images are widely used 

in remote sensing applications; however, their quality is 

often degraded by multiplicative speckle noise, which 

complicates scene interpretation and automated analysis. 

Existing approaches to image quality assessment 

predominantly rely on statistical methods and require 
reference images, which are typically unavailable in 

practical SAR scenarios. 

A priori assessment of expected quality after filtering is 

critical for rational selection of processing methods and 

reducing computational load in production SAR data 

processing pipelines. Such assessment enables exclusion of 

unpromising scenes, reduces error risk, and allows 

computation planning before launching resource-intensive 

procedures. In operational contexts, this capability 

supports several practical scenarios: automated filter 

selection in batch processing systems, where different  
 

 

scenes may benefit from different filtering approaches;  

resource allocation optimization in cloud-based SAR 

processing platforms; quality-driven prioritization of scene 

processing order; and early identification of scenes 

requiring special treatment or manual intervention. 

The objective of this work is to develop a method for a 

priori prediction of absolute quality metric values (PSNR, 

WSNR, SSIM, MS-SSIM, FSIM) for filtered Sentinel-1 

SAR scenes before applying speckle noise filters. 

The novelty lies in applying transfer learning of a 

neural network to predict final, rather than incremental, 

quality metric values of filtered SAR images. Unlike 

existing approaches, the method does not require reference 

images and does not rely on calculating a predefined set of 

statistical features; relevant features are extracted 
automatically from input images. To enhance training data 

variability, dynamic addition of gamma-distributed speckle 

noise is employed. 
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The following notations are adopted in this work: S1-

SAR denotes Sentinel-1 images (SAR, IW GRD, VV); S2-

NIR denotes Sentinel-2 optical images (L2A, B8, 10 m). 

All derived versions (after p98-clipped max normalization, 

histogram matching, speckle addition/filtering) are denoted 

with the same prefixes. 

 

Related Work 
 

Classical methods for speckle noise suppression in 

SAR images include Gamma MAP (Medeiros et al., 2003; 

Sveinsson & Benediktsson, 1996; Beauchemin et al., 

1996), Lee (Lee, 1980), Enhanced Lee, Frost (Frost et al., 

1982), anisotropic diffusion SRAD (Yu & Acton, 2002), 

and Kuan (Kuan et al., 1985) filters. These approaches use 

local statistics and probabilistic models to achieve a 

balance between noise suppression and preservation of 

structural details. 

Filtering quality is traditionally evaluated using PSNR, 

WSNR, SSIM, MS-SSIM, and FSIM metrics (Wang et al., 

2004). Selection of the optimal filter is complicated by the 

dependence of results on scene characteristics and 

algorithm parameters. 
To reduce computational costs, methods for a priori 

prediction of filter effectiveness have been proposed. 

Similar ideas for additive noise were developed in 

(Abramov et al., 2013; Lukin et al., 2014). For SAR data, 

approaches to predicting the effectiveness of Lee-like 

filters based on statistical features have been proposed, 

focusing on predicting the improvement in quality metrics 

(Rubel et al., 2015, 2019, 2020, 2021). 

In parallel, image quality assessment methods are 

developing: full-reference (FR-IQA) and no-reference 

(NR-IQA). Modern NR-IQA models based on deep 

learning demonstrate high correlation with subjective 

assessment (IEEE, 2022; Talebi & Milanfar, 2018), but are 

oriented toward general visual quality. 

Thus, a gap remains in the literature: there are no 

methods for a priori prediction of specific quality metrics 

for a given SAR filter. 
 

Methodology 
 

The developed methodology includes adaptation of the 

DenseNet-121 architecture for processing single-channel 

SAR images and creation of a synthetic data generation 

pipeline through histogram matching of Sentinel-2 optical 

images with reference Sentinel-1 SAR images. 

 

Model Architecture and Transfer Learning 
 

The proposed model is based on the DenseNet-121 

network, pre-trained on the ImageNet dataset. To adapt it 

to single-channel SAR images, several modifications were 

made: 

• The input Conv2d layer was changed from format (3, 

64, 7×7) to (1, 64, 7×7) with weight averaging across 

channels. This approach preserves the learned filter 

responses by combining RGB channel weights into a 

single grayscale-equivalent filter, which is a standard 

technique for adapting pre-trained models to single-

channel inputs. 

• MaxPool was replaced with AvgPool for better 

preservation of texture characteristics (Wei et al., 2022). 

• The classification head was replaced with a 

regression layer Linear(1024, 1). 

A full fine-tuning strategy is applied, where all layers 

of the network, including Dense blocks and BatchNorm 

layers, are trained jointly. This ensures adaptation of the 

model to SAR data specifics and the quality metric 

prediction task. 

Transfer learning enables utilization of universal 
features extracted from ImageNet, ensuring fast 

convergence when working with limited SAR scene 

datasets. 

Table 1 presents a detailed comparison of the original 

DenseNet-121 architecture and the modified version for 

processing single-channel satellite images. 
 

Table 1. DenseNet-121 modification for SAR filtering quality 
prediction 

Parameter Original (ImageNet) Modified (S1-SAR) 

Size 224×224 1024×1024 

Channels 3 (RGB) 1 (grayscale) 

Type Photo SAR 

Tensor [b,3,224,224] [b,1,1024,1024] 

   

Conv Conv2d(3,64,7,2,3) Conv2d(1,64,7,2,3) 

Bias True False 

Pool MaxPool2d(3,2,1) AvgPool2d(3,2,1) 

Output [b,64,56,56] [b,64,256,256] 

   

DB1 input [b,64,56,56] [b,64,256,256] 

DB1 output [b,256,56,56] [b,256,256,256] 

TL1 [b,128,28,28] [b,128,128,128] 

DB2 input [b,128,28,28] [b,128,128,128] 

DB2 output [b,512,28,28] [b,512,128,128] 

TL2 [b,256,14,14] [b,256,64,64] 

DB3 input [b,256,14,14] [b,256,64,64] 

DB3 output [b,1024,14,14] [b,1024,64,64] 

TL3 [b,512,7,7] [b,512,32,32] 

DB4 input [b,512,7,7] [b,512,32,32] 

DB4 output [b,1024,7,7] [b,1024,32,32] 

   

GAP input [b,1024,7,7] [b,1024,32,32] 

GAP output [b,1024] [b,1024] 

Linear in 1024 1024 

Linear out 1000 1 

Task Classification Regression 

 

Synthetic Data Generation 

Reference Sentinel-1 SAR Data 
 

To create a statistical reference, denoised Sentinel-1 

IW GRD images (VV polarization) are used. p98-clipped 

max normalization and Lee filtering (window 7×7) are 

applied to obtain a realistic amplitude distribution without 

pronounced speckle. Sentinel-1 GRD products are ready-

to-use data with applied corrections and reduced speckle 

noise due to multi-look processing (Filipponi, 2019). 
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Sentinel-1 GRD products store pixel values in the 

amplitude domain, not intensities. The digital number 

(DN) for each pixel is calculated as shown in Equation 1 

(European Space Agency, 2022): 

2

1

1
round

N

i
i

DN s S
N 

 
   

 
 .                   (1) 

where N is the number of looks (5×1 for IW GRD HR 

according to the official Sentinel-1 specification (European 

Space Agency, 2016)), si is the complex signal of the i-th 

look, S is the scaling factor from the Application LUT, 

depending on application and range, calculated as 

Si = interpolate (θi), where θi is the incidence angle for  

pixel i. Note that N = 5 in the formula corresponds to the 

geometric number of looks, while ENL = 4.4 (European 
Space Agency, 2016) characterizes speckle suppression 

effectiveness accounting for correlations between 

neighboring pixels. In this study, we utilize Sentinel-1 

Level-1 GRD products directly without radiometric 

calibration to sigma nought (σ0). The pixel values represent 

detected amplitude (Digital Numbers), which preserve the 

image geometry and noise statistics required for the 

proposed learning-based filtering quality prediction 

approach. Since the quality metrics (PSNR, SSIM, etc.) are 

computed from relative intensity relationships rather than 

absolute physical values, the use of DN is sufficient for 

this task. 

 

Sentinel-2 Optical Data 
 

Optical images from Sentinel-2 Level-2A (B8 channel, 

10 m resolution) are used, which do not contain speckle 

noise. The data undergo p98-clipped max normalization to 

match the dynamic range with SAR images. 

The rationale for using optical imagery as the basis for 

synthetic ground truth is as follows: optical images provide 

clean geometric structure without speckle contamination, 

serving as ideal reference images for quality metric 

computation. While the physical mechanisms of optical 

reflectance and radar backscattering differ fundamentally, 

the proposed approach focuses on learning the relationship 

between image texture patterns and filtering quality 

metrics, rather than modeling radar physics. Histogram 
matching subsequently aligns the radiometric distribution 

of optical images with SAR statistics, creating training 

samples that are statistically representative of SAR 

imagery while preserving the known ground truth 

structure. This methodology enables controlled generation 

of noisy-clean image pairs essential for supervised learning 

of quality prediction. 

 

Data Integration Process 
 

Preprocessed S2-NIR and S1-SAR images are 

characterized by statistical features of mean brightness mu 

and standard deviation sigma. SAR scenes are clustered by 

their features using the k-means algorithm. The optimal 

number of clusters was determined using the Calinski-

Harabasz (CH) Index, which evaluates the ratio of 

between-cluster to within-cluster variance. Analysis across 

k in [2, 60] revealed that while the global maximum is 

achieved at k = 2 (CH = 56.27), such coarse partitioning is 

insufficient for capturing the diverse scene semantics 

required for effective histogram matching. In the range k in 

[50, 60], the CH scores stabilize (22.04–24.38). The value 

k = 56 was selected as a local optimum (CH = 23.39) that 

exceeds the range mean (22.95). Crucially, this choice 

represents a trade-off that ensures sufficient semantic 

granularity of scene types while maintaining a constraint of 

at least 20 images per cluster, which is necessary for 

representative statistical sampling in the synthetic data 

generation pipeline. For each cluster, an equal (as far as 

possible) number of optical images S2-NIR is selected 

according to the minimum Euclidean distance criterion. 

Within the cluster, for each S2-NIR image, a 

corresponding S1-SAR reference image is randomly 
selected, further increasing scene diversity. The final stage 

includes histogram matching of optical images with paired 

SAR references. 

The process of stylizing optical images into SAR-like 

images is illustrated in Fig. 1.  
 

 
 

Fig. 1. Scheme of the process for stylizing S2-NIR optical 

images into SAR-like images. The process includes sequential 
transformation stages: from original optical images through 

normalization and clustering to final histogram matching  

with S1-SAR references 
 

Histogram Matching Details 
 

For histogram matching, for each optical image I(x, y), 

an S1-SAR reference R(x, y) from the same cluster is 

selected and a monotonic transformation (Equation 2) is 

applied: 
1( , ) ( ( ( , )))hm R II x y F F I x y  ,                   (2) 

where (x, y) are pixel coordinates in the image, FI, FR are 

empirical cumulative distribution functions (CDF) of 

brightness for the original and reference images, 

respectively. This monotonic transformation is based on 

the principle of preserving rank relationships between 

pixels. The function FI(I(x, y)) transforms the pixel 

brightness into its percentile in the original image, while 
1( )RF    finds the corresponding brightness value in the 

reference image for the same percentile. Histogram 

matching is a pixel-wise (pointwise) operation that 

modifies only intensity values without altering spatial 

positions of pixels; consequently, the geometric structure 

of the original image remains unchanged. The preservation 

of rank order ensures that local contrast relationships are 

maintained after the transformation. 
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The correctness of histogram matching is demonstrated 

in Fig. 2, which shows KDE curves (Kernel Density 

Estimation – a non-parametric method for density 

estimation) of brightness for the denoised S1-SAR image, 

stylized optical, and original optical images. KDE provides 

a smooth estimation of data density distribution, allowing 

visual comparison of statistical characteristics of images. 

The green and red lines practically coincide, indicating 

distribution matching after histogram matching, while the 

blue line illustrates the original S2-NIR statistics. 
 

 
 

Fig. 2. Comparison of brightness distributions for images 

(fragments shown in Fig. 3): denoised S1-SAR (b, green line), 

stylized S2-NIR after histogram matching (e, red line), and 
original S2-NIR (c, blue line). 

 

The effectiveness of the stylization procedure is 

demonstrated by comparative analysis of six fragments in 

Fig. 3. Visually, it can be observed that the stylized noisy 

fragment (f) shows greater photometric similarity to the 

original SAR fragment (a) compared to the simply noised 

optical fragment (d). 

 
Fig. 3. Comparison of S1-SAR and S2-NIR fragments at different 

processing stages: (a) S1-SAR original, (b) S1-SAR after Lee 

filtering, (c) S2-NIR original, (d) S2-NIR noised, (e) S2-NIR 

after histogram matching, (f) S2-NIR stylized noised 
 

The final synthetic S2-NIR dataset reproduces the 

radiometric characteristics of S1-SAR images while 

preserving the geometric structure of optical images, 

providing an appropriate basis for training the DenseNet-

121 model. 

Dynamic Speckle Noise Addition 
 

During training, each stylized optical image receives a 

new realization of multiplicative speckle noise with 

random parameters corresponding to Sentinel-1 SAR 

image characteristics. Dynamic noise addition in each 

epoch significantly increases data variability and 

eliminates the need to store numerous image copies while 
maintaining experiment reproducibility. 
 

Speckle noise model and parameterization 
The work uses a multiplicative speckle model in 

intensities (Equation 3): 

Y(x, y) = X(x, y) ∙ S(x, y),   S ~ Г(k = L, θ = 1/L),    (3) 

Where X is the true scene intensity, Y is the observed 

intensity, S is the speckle multiplier, and L ≡ ENL 

(equivalent number of looks). 

This parameterization of the gamma distribution 

ensures μs = 1 (mean speckle value) and 2 1/s L   (speckle 

variance), which corresponds to the physical properties of 

speckle. The coefficient of variation CV (coefficient of 

variation), characterizing the relative noise variability, is 

determined as shown in Equation 4: 
2

2

2 2

1/ 1 1
CV , CV .

1

s

s

L

L L


   


               (4) 

Experiments used values L ∈ [2, 6] characteristic of 

Sentinel-1 IW GRD, which is consistent with classical 

speckle models (Lee, 1980; Frost et al., 1982; Medeiros  

et al., 2003; Singh & Pandey, 2016; Moein & Taban, 2024) 

and Sentinel-1 GRD preprocessing methods (Filipponi, 

2019). Dynamic addition of speckle noise with random 

ENL values in the specified range ensures training of a 

model robust to different noise levels. 
 

Implementation details (low-frequency texture  

and upsampling) 
Noising of stylized images is performed in the intensity 

domain to ensure physical correctness of the speckle 

model. The process includes conversion from amplitude 

representation to intensities, generation of gamma-

distributed speckle noise at reduced resolution to create 

large-scale texture variations, upsampling the noise to 

original resolution, multiplicative noise application, and 

conversion back to amplitude domain followed by 

normalization. These stages are integrated into the general 

quality assessment scheme shown in Fig. 4. 
 

 
 

Fig. 4. Validation scheme: comparison of model predictions  

with real filtering results. Gray blocks denote processing stages  

in the intensity domain 
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To control the speckle correlation length, a scale 

s ∈ (0,1] (Lee, 1980) is u sed: smaller values of s lead to a 

larger correlation length (increased spatial correlation), 
while larger values of s lead to a finer one. Let the original 

image have size H×W. A low-resolution noise map of size 

is constructed according to Equation 5: 

, .s sH sH W sW                            (5) 

On this grid, speckle is independently sampled: 

( , ) ( , 1/ ),S i j Г k L L


                  (5a) 

   ( , ) 1,..., 1,..., .s si j H W                (5b) 

Next, bilinear upsampling to the original size is 

performed (Equation 6): 

( ; , ).bilinearS U S H W


                      (6) 

To preserve the statistics of the gamma map after 

upsampling, renormalization is applied. First, the statistics 

are calculated (Equations 7 and 8): 

, ,
mean( ), std( ),

s s
S S

   
                   (7) 

,                  (8) 

and the final multiplier is formed according to Equation 9: 

                       (9) 

The noisy image is obtained by applying multiplicative 

noise according to Equation 10: 

                               (10) 

The optimal value s = 0.6 was determined empirically 
based on analysis of the autocorrelation function (ACF) of 

reference SAR images and experiments with varying s 

(0.2, 0.4, 0.6, 0.8, 1.0). Detailed ACF analysis for different 

values of s is presented in the supplementary materials to 

the article. The selected value minimizes the discrepancy 

between ACF of synthetic and real Sentinel-1 data, 

ensuring visual similarity of synthetic noisy images to real 

ones. 

This approach ensures generation of images that are 

radiometrically and in terms of noise characteristics 

statistically equivalent to real Sentinel-1 SAR data, while 

preserving the geometric structure of the original optical 

images. 

Normalization of noisy images 
The final stage of the noising process is normalization 

of the noisy images (see Fig. 4) to eliminate dependence of 

predictions on radiometric image characteristics. This is 
critically important for correct model training, since 

without normalization the model might learn to predict 

filtering quality based on simple brightness analysis rather 

than complex texture and structural image characteristics. 

Normalization is performed by dividing each noisy 

image by its mean value (Equation 11): 

noisy

noisy

noisy_norm ,
I

I
I 

                        (11) 

where µInoisy is the mean brightness value of the noisy 

image. Accordingly, clean (reference) images are 

normalized by the same coefficient (Equation 12): 

noisy

clean
clean_norm .

I

I
I 

                      (12) 

Such normalization ensures that all images have unit 

mean brightness value, which eliminates the possibility for 

the model to use radiometric characteristics as an indicator 

of noise level. The model is forced to analyze more 

complex spatial patterns and texture features for a priori 

prediction of filtered image quality, which increases its 

generalization ability and robustness to lighting variations 

and scene radiometric characteristics. 
 

Experimental Setup 

Data Splitting 
 

The synthetic dataset (1910 stylized S2-NIR images) 

was split in an 80/20 ratio into training (1528 images) and 

test (382 images) sets. S1-SAR images (1522 images) were 

used only as references for histogram matching. 

Models were trained on the training set with validation 

on the test set. Final evaluation was performed on models 

with the best results on training data to ensure correct 
assessment of generalization ability. 

 

Ground Truth Generation and Quality Metrics 

Data Processing Domains 
 

Data processing is performed in domains aligned with 

signal physics and target product format. The Sentinel-1 
IW GRD product is published in the amplitude domain 

(DN proportional to echo-signal root-mean-square 

amplitude) (European Space Agency, 2022), and it is this 

product that undergoes filtering and visual assessment. 

Accordingly, references and target quality metrics (PSNR, 

WSNR, SSIM, MS-SSIM, FSIM) are calculated in the 

amplitude domain: this ensures metric comparability with 

GRD images, correct result interpretability, and 

consistency with visual perception (Wang et al., 2004). In 

contrast, speckle noise modeling and suppression are 

performed in the intensity domain, where the standard 

multiplicative model Y = X ∙ S holds with gamma-

distributed multiplier at L ≡ ENL. For data synthesis and 

application of classical filters, the image is converted from 

amplitude to intensity (by squaring), noising and filtering 

are performed, after which the result is returned to the 

amplitude domain for assessment. This decomposition of 
stages simultaneously preserves physical correctness of the 

noise model in intensities and ensures that the final quality 

assessment is conducted in the same domain as the original 

GRD product, providing direct visual comparability with 

the original amplitude image. 
 

Procedure for Generating Ground Truth Metric Values 
 

Ground truth metric values are formed as follows: 

multiplicative speckle noise is added to stylized optical 

images (in the amplitude domain), for which the data is 

converted to the intensity domain (by squaring), where a 

gamma-distributed multiplier is applied, after which the 

result is converted back to the amplitude domain. The 
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resulting noisy images are then filtered using one of the 

investigated methods in the intensity domain. Ground truth 

metric values are calculated by comparing the filtered 

images (in the amplitude domain) with the original stylized 

images without noise. The model is trained to predict 

expected quality metric values based on noisy images in 

the amplitude domain, which ensures correspondence with 

human image perception. 

 

Model Performance Metrics 
 

Three metrics were used to assess the quality of model 

predictions, which measure the accuracy of predicting 

target image quality metric values: 

Mean Absolute Error (MAE) (Equation 13): 

1
1

1
ˆ ,

N

i
i

MAE y y
N 

 
                    (13) 

where yi are the true quality metric values, ŷi are the values 

predicted by the model, N is the number of observations. 

Root Mean Square Error (RMSE) (Equation 14): 

2

1

1
ˆ( ) .

N

i i
i

RMSE y y
N 

                   (14) 

Sensitive to large prediction errors. 

Coefficient of Determination (R²) (Equation 15): 
2

2 1

2

1

ˆ( )
1 ,

( )

N

i ii
N

ii

y y
R

y y






 





                     (15) 

where ȳ is the mean value across all true yi values. 

Characterizes the fraction of variance explained by the 

model (higher = better). 

 

Image Quality Metrics 
 

The following are the image quality metrics that the 

model predicts for each filter type. These metrics assess 

the quality of filtered images relative to reference (noise-

free) images: 

The PSNR (Peak Signal-to-Noise Ratio) metric 

measures the ratio of the maximum possible signal value to 

noise power (Equation 16): 

1020log ,IMAX
PSNR

MSE

 
  

 
                   (16) 

where  
2

denoised clean

1
MSE I I

HWC
   is the mean square 

error across all pixels, channels, and spatial dimensions, 

MAXI is the maximum intensity value (usually 1.0 for 

normalized images). Units: dB (higher = better). 

The WSNR (Weighted Signal-to-Noise Ratio) metric is 

calculated in the frequency domain using the Contrast 

Sensitivity Function (CSF) for weighting different 

frequency components (Equation 17): 
2

, , , , ,

10 2

, , , , ,

10log ,
c h w c h w h w

c h w c h w h w

S W
WSNR

N W

 
 
  




      (17) 

where Sc,h,w are the spectral components of the original 

image, Nc,h,w are the spectral components of noise 

(difference between original and processed image), Wh,w is 

the CSF weighting function for spatial frequencies. Units: 

dB (higher = better). 

The SSIM (Structural Similarity Index Measure) metric 

assesses structural similarity between two images by 

analyzing brightness, contrast, and structure (Equation 18): 

1 2

2 2 2 2
1 2

(2 )(2 )
( , ) ,

( )( )

x y xy

x y x y

C C
SSIM x y

C C

    


               (18) 

where µx, µy are the mean brightness values of images x 

and y, 2 2,x y   are variances (contrast), σxy is covariance 

between x and y (structure), C1 = 0.012 = 0.0001, 

C2 = 0.032 = 0.0009 are stabilization constants for images 

in range [0, 1]. Value range: [–1,1] (where 1 means perfect 

match). 

The MS-SSIM (Multi-Scale Structural Similarity 

Index) metric is calculated as weighted product of SSIM at 

different scales (Equation 19): 
4

0

- ( , ) [ ( , )] ,jw

j j
j

MS SSIM x y SSIM x y


          (19) 

where xj, yj are images at scale j after downsampling 

(starting from original size), wj are weighting coefficients 

with values w0 = 0.0448, w1 = 0.2856, w2 = 0.3001, 

w3 = 0.2363. Each subsequent image is reduced by 2 times 

using average pooling. Value range: [0,1] (where 1 means 

perfect match). 

The FSIM (Feature Similarity Index) metric uses phase 

and gradient information in feature space (Zhang et al., 

2011) (Equation 20): 

( ) ( )
,

( ) ( )

m m n n

m m n n

PC SC PC SC
FSIM

PC SC PC SC

  


  
           (20) 

where PCm (Phase Congruency) is phase congruency, SCm 

(Similarity of Gradient) is gradient similarity, and indices 

m and n denote two similarity measures. Value range: [0,1] 
(where 1 means perfect match). 

 

Training Settings 
 

Models were trained in PyTorch using NVIDIA RTX 

4090 GPU. Hyperparameters: 

• Optimizer: Adam (η = 10–4) 

• Epochs: 120 

• Batch size: 4 images (1024×1024) 

• Loss function: MSE 

• Gradient accumulation: 2 steps 

For each combination of filter (6 types) and quality 

metric (5 types), independent training was conducted with 

dynamic speckle noise addition (ENL ∈ [2,6]). 

Epoch duration varied from 43 to 210 seconds 

depending on the filter-metric combination. Total training 

time for all 30 experiments was approximately 60 hours. 
Full fine-tuning strategy of DenseNet-121 was applied. 

 

Evaluation Methodology 
 

Model prediction accuracy assessment (Fig. 4) is based 

on comparing its output values with ground truth. Ground 

truth metrics are formed by adding speckle noise to 

stylized images, followed by filtering and calculation of 
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quality metrics relative to original clean images. 

Simultaneously, the same noisy images are fed to the 

model to obtain predictions. The accuracy of the final 

comparison is assessed using MAE, RMSE, and R2. 

 

Reproducibility and Availability 
 

Data. Original Sentinel-1 (IW GRD) and Sentinel-2 

(L2A) scenes were obtained from the Copernicus Data 

Space Ecosystem platform. Sentinel-2 data were 

segmented into 1024×1024 pixel patches with histogram 

matching of optical images to SAR radiometry. The 

processed dataset is hosted in the Zenodo repository: 

https://zenodo.org/uploads/17253925. After publication, a 

permanent DOI will be obtained for citation. 

Code. Python implementation is available in the 

GitHub repository: https://github.com/rsenaikh/Predicting_ 

Quality_after_Noise_Removal with reproduction instructions. 

Experiments. All experiments were conducted on 

NVIDIA RTX 4090 GPU using PyTorch and NumPy. 

Detailed training settings are provided in Section 4. 

Ethics. Sentinel-1/2 data are distributed under open 

Copernicus license. Ethical approvals are not required. 

 

Results and Discussion 

Training Dynamics 
 

The training curves (Fig. 5) demonstrate two key 

phases. The sharp initial error reduction is explained by 

effective transfer of low-level texture features from the 

ImageNet pre-trained model (Wanjiku et al., 2022), where 

universal features (edges, textures) ensure fast convergence 

in early stages, minimizing the need for additional 

regularization. This is followed by a phase of asymptotic 

approach to values on the order of 10–5, with synchronous 

dynamics of training and test curves without divergence 

indicating absence of overfitting. This behavior confirms 

the effectiveness of the full fine-tuning strategy, where all 
layers, including Dense blocks and BatchNorm layers, are 

adapted jointly, ensuring comprehensive tuning to SAR 

data specifics and the regression task. 

 
Fig. 5. Model training dynamics (Kuan filter, WSNR metric): 

loss function on training and test sets 
 

Qualitative Examples 
 

Fig. 6 shows model predictions for a fragment 

processed with Lee and Gamma MAP filters. The 

predicted values demonstrate high accuracy with absolute 

errors of 0.036 dB and 0.037 dB respectively, illustrating 

the feasibility of the proposed approach for a priori 

prediction of filtered image quality. 

 
 

Fig. 6. Comparison of predicted and true PSNR values for Lee 

and Gamma MAP filters on test images. Shown are original noisy 
images, filtering results, and corresponding quality metric values 

 

Quantitative Results 
 

Table 2 contains MAE, RMSE, and R2 values for all 

combinations of filters and quality metrics. All results are 

obtained on the test set of 382 stylized images sized 

1024×1024 pixels. 
 

Table 2. Prediction accuracy of filtering quality 

Filter Stat PSNR SSIM 
MS-

SSIM 
FSIM WSNR 

Gamma 

Map 

MAE 0.2884 0.0132 0.0054 0.0021 0.1402 

RMSE 0.4475 0.0222 0.0082 0.0027 0.1944 

R2 0.9886 0.9693 0.9972 0.9826 0.9972 

Lee 

MAE 0.1077 0.0043 0.0023 0.0023 0.0459 

RMSE 0.1425 0.0058 0.0037 0.0037 0.0635 

R2 0.9864 0.9777 0.9518 0.9546 0.9966 

Enhance

d Lee 

MAE 0.0587 0.0064 0.0023 0.0025 0.0442 

RMSE 0.0803 0.0086 0.0031 0.0044 0.0575 

R2 0.9957 0.9343 0.9605 0.9364 0.9965 

Frost 

MAE 0.0805 0.0040 0.0019 0.0025 0.1318 

RMSE 0.106 0.0054 0.0029 0.004 0.1822 

R2 0.9949 0.9825 0.9756 0.9609 0.9911 

Srad 

MAE 0.2391 0.0053 0.0025 0.0025 0.2781 

RMSE 0.2964 0.0073 0.0038 0.0038 0.3582 

R2 0.9523 0.9644 0.955 0.9577 0.9429 

https://zenodo.org/uploads/17253925
https://github.com/rsenaikh/Predicting_Quality_after_Noise_Removal
https://github.com/rsenaikh/Predicting_Quality_after_Noise_Removal
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Kuan 

MAE 0.0514 0.0039 0.0021 0.0027 0.0486 

RMSE 0.0722 0.0054 0.003 0.004 0.0637 

R2 0.996 0.9812 0.9666 0.9519 0.9963 

 

The average coefficient of determination R2 across all 

filter-metric combinations is 0.9732 ± 0.0201.  

Scatter plots (Fig. 7) show predicted and true values of 

quality metrics for selected filter-metric combinations. 
 

 
 

Fig. 7. Scatter plots of predicted vs. true values for selected 

quality metrics (PSNR, WSNR, SSIM, MS-SSIM, FSIM)  

with filters providing the best prediction accuracy. 

 

Plots of normalized mean absolute error (NMAE) 

dependence on noise level (Fig. 8) show the change in 

prediction error depending on the equivalent number of 

looks (ENL) in the range [2, 6]. 
 

 
 

Fig. 8. Dependence of normalized prediction error on noise  

level (ENL) 

 
 

Prediction error histograms (Fig. 9) show the 

distribution of errors for different filter-metric 

combinations. 
 

 
 

Fig. 9. Prediction error histograms for different filter-metric 

combinations 

 

Results Analysis 
 

The results show high values of the coefficient of 

determination R2 for most filter-metric combinations 
(R2 > 0.97 for most combinations). The maximum value 

R2 = 0.9972 was achieved for MS-SSIM and WSNR 

metrics of the Gamma MAP filter. The minimum value 

R2 = 0.9343 is observed for the SSIM metric and Enhanced 

Lee filter. 

The aggregated distribution of values across all filter-

metric pairs is shown in the heatmap (Fig. 10). The 

heatmap reveals distinct patterns: maximum values occur 

for noise-sensitive metrics (PSNR, WSNR), while 

structural metrics (SSIM, MS-SSIM, FSIM) exhibit lower 

R2 values. 

 
Fig. 10. Heatmap of coefficient of determination R2  

for different filters and quality metrics 
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Detailed results by quality metric types are shown in 

Table 3, presenting average R2 values and ranges for each 

metric. 
 

Table 3. Prediction accuracy analysis by quality metric types 

Metric Average R² Range 

PSNR 0.987 [0.952, 0.996] 

WSNR 0.987 [0.943, 0.997] 

SSIM 0.968 [0.934, 0.982] 

MS-SSIM 0.969 [0.952, 0.997] 

FSIM 0.957 [0.937, 0.983] 

 

Results breakdown by filter types is presented in 

Table 4, containing average R2 values and ranges for each 

filter. 
 

Table 4. Prediction accuracy analysis by filter types 

Filter Average R² Range 

Gamma MAP 0.987 [0.969, 0.997] 

Kuan 0.978 [0.952, 0.996] 

Frost 0.978 [0.960, 0.995] 

Enhanced Lee 0.963 [0.934, 0.997] 

Lee 0.973 [0.952, 0.997] 

SRAD 0.955 [0.943, 0.964] 

 

At the filter level, the lowest R2 values are observed for 

SRAD compared to other filters, which may be related to 

the specifics of anisotropic diffusion requiring more 

complex modeling of spatial gradients. In contrast, Kuan, 

Frost, and Enhanced Lee filters demonstrate high R2 > 0.99 

values for noise-sensitive metrics, explained by more 

predictable distortion patterns created by adaptive methods 

based on local scene statistics (Lee, 1980). 

At the metric level, FSIM depends on phase 

congruency and texture features, going beyond amplitude 

and contrast distortions characteristic of PSNR/WSNR and 

partially SSIM/MS-SSIM (Wang et al., 2004). 
Accordingly, FSIM prediction proves most challenging, 

reflected in relatively lower R2 values. 

These patterns are consistent with DenseNet-121 

properties. Feature concatenation within dense blocks 

preserves early maps containing local statistics (means, 

variances, texture patterns), supporting high R2 for noise-

sensitive PSNR/WSNR metrics. As the network deepens, 

receptive field increases, forming multi-scale 

representations that contribute to SSIM/MS-SSIM 

accuracy. Together, this explains high R2 for most filters 

and relative difficulty in predicting SRAD, requiring 

precise modeling of anisotropic diffusion processes. 

Scatter plots demonstrate nearly linear correspondence 

between predictions and true values with narrow 

dispersion across the entire metric range, indicating 

absence of bias and high model calibration. 

NMAE dependence plots on ENL show weak 
sensitivity of error to speckle level in the [2, 6] interval and 

stability of estimates across samples, indicating robustness 

to noise variations. 

Error histograms are approximated by normal 

distribution with zero mean and no pronounced 

asymmetry, ruling out systematic biases and confirming 

correct model specification. 

Recommendations for Metric Selection 
 

Based on the obtained results and metric 

characteristics, the following recommendations for metric 

selection depending on application context can be 

formulated: 

• PSNR and WSNR are recommended for applications 

where overall noise suppression level is the primary 

concern, such as preliminary scene assessment or batch 

processing quality control. WSNR additionally accounts 

for human visual perception through frequency weighting. 

• SSIM and MS-SSIM are preferable for tasks 

requiring preservation of structural information, such as 
change detection, object recognition, or visual 

interpretation. MS-SSIM provides more robust assessment 

across different scales and is recommended for 

heterogeneous scenes. 

• FSIM is recommended for applications sensitive to 

fine texture and phase information, such as interferometric 

processing preparation or detailed terrain analysis. 

However, its prediction shows lower accuracy, suggesting 

careful validation for critical applications. 

• For general-purpose filter selection, a combination of 

PSNR (noise assessment) and SSIM (structure 

preservation) provides a balanced evaluation approach. 

 

Comparison with Baseline Methods 
 

The proposed approach differs from existing statistical 

methods (Rubel et al., 2019, 2020, 2021) based on 

calculating 28 expert features. Direct quantitative 

comparison with these methods is difficult since they focus 

on predicting the relative improvement in quality metrics, 

while the proposed model predicts absolute values. 

Nevertheless, the fundamental advantage of deep learning 

lies in automatic extraction of hierarchical features, 

eliminating the need for labor-intensive manual design and 

ensuring higher generalization ability. 

Key differences: 

• End-to-end hierarchical feature extraction by deep 

neural network instead of manual design and calculation of 

fixed statistical characteristic set. 

• Prediction of final absolute quality metric values 

rather than their relative improvement (gain), which is a 
more complex and practically significant task. 

• Application of transfer learning based on DenseNet-

121 deep convolutional network adapted for processing 

single-channel SAR images of high resolution (1024×1024 

pixels). 

• Unified and robust model capable of predicting 

quality for a specific filter and adapting to variable noise 

levels (ENL ∈ [2,6]) without additional training. 

• Use of innovative synthetic data generation pipeline 

based on histogram matching of optical (Sentinel-2) and 

SAR (Sentinel-1) references for creating photorealistic 

training samples. 

• Application of complex speckle noise model with 

controlled spatial correlation and data normalization to 
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ensure prediction invariance to scene radiometric 

characteristics. 

Results (R2 = 0.9886 for PSNR of Gamma MAP filter, 

where PSNR is chosen as the most universal quality metric 

and Gamma MAP as one of the most effective adaptive 

filters) confirm the effectiveness of deep learning for a 

priori prediction of absolute quality metric values for SAR 

image filtering, which is a more complex and practically 

significant task compared to predicting relative 

improvement. 

 

Limitations 
 

Despite high results, the approach has limitations: 

• Synthetic nature of data limits generalizability to real 

SAR scenes with geometric distortions (layover, shadow, 

foreshortening), requiring additional validation on real 

data. 

• Fixed image size (1024×1024 pixels) limits 

applicability to scenes of arbitrary size. 

• Noise range is limited to typical Sentinel-1 IW GRD 

conditions (ENL ∈ [2,6]), which may reduce accuracy for 

other SAR systems. 

• Synthetic nature of data based on Sentinel-2 optical 

images does not account for SAR-specific geometric 

distortions (layover, shadow, foreshortening) inherent to 

complex terrains. This is a key limitation requiring 

additional validation on real SAR data containing such 

artifacts to assess model generalization ability. 

• The physical mechanisms of optical reflectance and 

radar backscattering differ fundamentally. While histogram 

matching aligns statistical distributions, it cannot fully 

replicate the scattering behavior of different surface types 

in SAR imagery. This may affect model performance on 
scenes where optical-radar contrast relationships differ 

significantly from the training data. 

• Potential contrast inversion between optical and radar 

images (e.g., water bodies appearing bright in optical but 

dark in SAR, or urban areas with different backscattering 

characteristics) represents an unexplored factor that may 

influence stylization quality and subsequent prediction 

accuracy. 

• The study focuses exclusively on VV polarization; 

applicability to VH polarization and cross-polarization 

scenarios remains to be validated. 

 

Future Perspectives and Research 
 

The obtained results open several directions for further 

development: 

• Real Data Validation: Extension of research to real 
Sentinel-1 SAR scenes with geometric distortions (layover, 

shadow, foreshortening) to assess model generalizability. 

• Noise Range Extension: Model adaptation for operation 

with extreme noise levels (ENL < 2 and ENL > 6) 

characteristic of other SAR systems (ALOS PALSAR, 

TerraSAR-X). 

• Multispectral Data: Extension of approach to 

complex SAR images and polarimetric data for a priori 

prediction of filtered image quality in different polarization 

channels. 

• Adaptive Architectures: Investigation of attention 

mechanisms and transformer architectures to improve 

prediction accuracy for complex metrics like FSIM. 

• Pipeline Integration: Implementation of the model 

in operational SAR data processing chains for automatic 

selection of optimal filtering parameters. 

• Radiometric Calibration: While this study 

demonstrates effectiveness on GRD data with DN values, 

future implementations intended for physical parameter 

retrieval should investigate the impact of radiometric 

calibration (conversion to σ⁰ or γ⁰) on prediction accuracy. 

• Polarization Diversity: Validation of the approach 

on VH polarization data and investigation of cross-

polarization scenarios to extend applicability to dual-

polarization Sentinel-1 products. 
• Pipeline Performance Evaluation: Theoretical and 

experimental assessment of end-to-end processing pipeline 

performance, including computational efficiency analysis 

and comparison with direct filtering approaches in terms of 

time-quality trade-offs. 

• Contrast Inversion Analysis: Systematic 

investigation of the impact of optical-radar contrast 

inversion on stylization quality and prediction accuracy 

across different land cover types. 

 

Conclusion 
 

A method for a priori prediction of filtered Sentinel-1 
SAR image quality based on adapted DenseNet-121 has 

been developed. This approach predicts absolute values of 

quality metrics (PSNR, WSNR, SSIM, MS-SSIM, FSIM) 

for a specific filter before its application. 

Experiments with six classical filters achieved high 

accuracy indicators: R2 ≥ 0.97 for most combinations 

(Table 2). 

Key contributions: 
• Formulation of the task of a priori prediction of 

specific quality metrics for a given filter. 

• DenseNet-121 adaptation to single-channel SAR 

inputs with full fine-tuning. 

• Synthetic data generation pipeline through histogram 

matching of optical and SAR images with dynamic speckle 

noise addition. 

Solved tasks: 
• Developed a physically consistent pipeline with 

processing in intensities (for noise and filtering) and 
assessment in amplitudes (for metrics), matching the 

Sentinel-1 GRD product format. 

• Constructed a SAR-like synthetic dataset by 

histogram matching Sentinel-2 (B8) to Sentinel-1 

references, with dynamic, spatially correlated speckle 

generation (ENL ∈ [2,6]) and per-image normalization. 

• Adapted and fully fine-tuned DenseNet-121 for 

single-channel 1024×1024 inputs (modified stem/pooling 

and regression head) for metric value prediction. 

• Generated ground-truth for six classical filters 

(Gamma MAP, Lee, Enhanced Lee, Frost, SRAD, Kuan) 
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across five metrics (PSNR, WSNR, SSIM, MS-SSIM, 

FSIM) and trained 30 specialized models. 

• Demonstrated robustness to noise level variation and 

scene diversity, with near-linear calibration of predictions 

versus ground truth. 

Quantitatively, the best results reached R2 = 0.997  

(Gamma MAP: MS-SSIM/WSNR), with an average across 

all filter–metric pairs of R2 = 0.9732 ± 0.0201 and low 

absolute errors (see Tables 2–4). 

Practical implications: 
• A priori ranking and selection of filters and their 

parameters without running expensive despeckling. 

• Early scene triage and compute budgeting in 

operational SAR processing chains. 

• Straightforward integration as a fast pre-filtering 

module; code and data are publicly available for 

reproduction and deployment. 
This approach enables optimization of filter selection 

before performing resource-intensive computations, 

reducing costs and increasing SAR data processing 

efficiency. 

Future research directions: 
• Validation on real SAR scenes accounting for 

geometric distortions. 

• Extension of noise parameter ranges and image sizes. 

• Investigation of alternative architectures and multi-

level inputs. 

• Assessment of prediction uncertainty and joint filter 

ranking. 
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ПРОГНОЗУВАННЯ ЯКОСТІ ВІДФІЛЬТРОВАНИХ ЗОБРАЖЕНЬ З ВИКОРИСТАННЯМ ТРАНСФЕРНОГО НАВЧАННЯ  

НА СПЕКЛ-ШУМІ SENTINEL-1 З DENSENET-121 

Р. Ж. Аль-Сенайх*, https://orcid.org/0000-0002-8059-4237 

О. С. Рубель, https://orcid.org/0000-0001-6206-3988 
Національний аерокосмічний університет "Харківський авіаційний інститут", вул. Вадима Манька, 17, Харків, 61000, Украина 

Спекл-шум, притаманний зображенням радара із синтезованою апертурою (РСА), погіршує якість зображень та ускладнює 

автоматизований аналіз у застосуваннях дистанційного зондування Землі. Кількісна оцінка результатів фільтрації потребує 

обчислення метрик якості відносно еталонних зображень, які недоступні в операційних сценаріях РСА. У цій статті викладено 
метод апріорного прогнозування метрик якості відфільтрованих РСА-зображень Sentinel-1 до застосування фільтрів придушення 

спекл-шуму. На відміну від існуючих підходів, що прогнозують відносне покращення якості, запропонований метод прогнозує 

абсолютні значення п’яти метрик (PSNR, WSNR, SSIM, MS-SSIM, FSIM) для конкретного фільтра, що забезпечує пряме 

порівняння та раціональний вибір фільтра. Методологія використовує трансферне навчання згорткової нейронної мережі 
DenseNet-121, попередньо навченої на ImageNet, адаптованої для одноканальних РСА-входів шляхом архітектурних 

модифікацій, включаючи трансформацію вхідного шару, оптимізацію пулінгу та заміну вихідного регресійного шару. Новий 

конвеєр генерації синтетичних даних використовує зіставлення гістограм оптичних зображень Sentinel-2 з еталонними РСА-

знімками Sentinel-1 для створення навчальних зразків із збереженням еталонних даних. Динамічне додавання гамма-
розподіленого спекл-шуму зі змінним ENL ∈  [2, 6] підвищує варіативність даних та стійкість моделі. Експерименти з шістьма 

класичними фільтрами (Gamma MAP, Lee, Enhanced Lee, Frost, SRAD, Kuan) демонструють високу точність прогнозування для 

всіх комбінацій фільтр-метрика. Коефіцієнт детермінації R² досягає 0,997 для найкращих комбінацій та перевищує 0,97 для 

більшості з 30 навчених моделей. Середні абсолютні похибки прогнозування не перевищують 0,29 дБ для PSNR та 0,014 для 
SSIM для всіх протестованих конфігурацій. Підхід забезпечує апріорне прогнозування якості без еталонних зображень, даючи 

змогу оптимізувати робочі процеси обробки РСА-даних та планування ресурсів до виконання ресурсомістких операцій 

фільтрації. 

Ключові слова: спекл-шум, Sentinel-1, метрики якості зображень, DenseNet-121, трансферне навчання. 
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