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Speckle noise inherent to synthetic aperture radar (SAR) imagery degrades image quality and complicates automated analysis in Earth
observation applications. Quantitative assessment of despeckling results requires computing quality metrics against reference images,
which are unavailable in operational SAR scenarios. This paper presents a method for a priori prediction of filtered Sentinel-1 SAR image
quality metrics before applying speckle noise filters. Unlike existing approaches predicting relative quality improvement, the proposed
method predicts absolute values of five metrics (PSNR, WSNR, SSIM, MS-SSIM, FSIM) for a specific filter, enabling direct comparison
and rational filter selection. The methodology employs transfer learning of DenseNet-121 convolutional neural network, pre-trained on
ImageNet, adapted for single-channel SAR inputs through architectural modifications including input layer transformation, pooling
optimization, and regression head replacement. A novel synthetic data generation pipeline utilizes histogram matching of Sentinel-2
optical images with Sentinel-1 SAR references to create training samples preserving ground truth. Dynamic gamma-distributed speckle
noise addition with variable ENL € [2, 6] enhances data variability and model robustness. Experiments with six classical filters (Gamma
MAP, Lee, Enhanced Lee, Frost, SRAD, Kuan) demonstrate high prediction accuracy across all filter-metric combinations. The
coefficient of determination R? reaches 0.997 for best combinations and exceeds 0.97 for most of the 30 trained models. Mean absolute
prediction errors remain below 0.29 dB for PSNR and 0.014 for SSIM across all tested configurations. The approach enables a priori
quality prediction without reference images, allowing optimization of SAR processing workflows and resource planning before resource-
intensive despeckling.
Keywords: Speckle noise, Sentinel-1, image quality metrics, DenseNet-121, transfer learning.
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Introduction

Synthetic aperture radar (SAR) images are widely used
in remote sensing applications; however, their quality is
often degraded by multiplicative speckle noise, which
complicates scene interpretation and automated analysis.
Existing approaches to image quality assessment
predominantly rely on statistical methods and require
reference images, which are typically unavailable in
practical SAR scenarios.

A priori assessment of expected quality after filtering is
critical for rational selection of processing methods and
reducing computational load in production SAR data
processing pipelines. Such assessment enables exclusion of
unpromising scenes, reduces error risk, and allows
computation planning before launching resource-intensive
procedures. In operational contexts, this capability
supports several practical scenarios: automated filter
selection in batch processing systems, where different

scenes may benefit from different filtering approaches;
resource allocation optimization in cloud-based SAR
processing platforms; quality-driven prioritization of scene
processing order; and early identification of scenes
requiring special treatment or manual intervention.

The objective of this work is to develop a method for a
priori prediction of absolute quality metric values (PSNR,
WSNR, SSIM, MS-SSIM, FSIM) for filtered Sentinel-1
SAR scenes before applying speckle noise filters.

The novelty lies in applying transfer learning of a
neural network to predict final, rather than incremental,
quality metric values of filtered SAR images. Unlike
existing approaches, the method does not require reference
images and does not rely on calculating a predefined set of
statistical features; relevant features are extracted
automatically from input images. To enhance training data
variability, dynamic addition of gamma-distributed speckle
noise is employed.
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The following notations are adopted in this work: S1-
SAR denotes Sentinel-1 images (SAR, IW GRD, VV); S2-
NIR denotes Sentinel-2 optical images (L2A, B8, 10 m).
All derived versions (after p98-clipped max normalization,
histogram matching, speckle addition/filtering) are denoted
with the same prefixes.

Related Work

Classical methods for speckle noise suppression in
SAR images include Gamma MAP (Medeiros et al., 2003;
Swveinsson & Benediktsson, 1996; Beauchemin et al.,
1996), Lee (Lee, 1980), Enhanced Lee, Frost (Frost et al.,
1982), anisotropic diffusion SRAD (Yu & Acton, 2002),
and Kuan (Kuan et al., 1985) filters. These approaches use
local statistics and probabilistic models to achieve a
balance between noise suppression and preservation of
structural details.

Filtering quality is traditionally evaluated using PSNR,
WSNR, SSIM, MS-SSIM, and FSIM metrics (Wang et al.,
2004). Selection of the optimal filter is complicated by the
dependence of results on scene characteristics and
algorithm parameters.

To reduce computational costs, methods for a priori
prediction of filter effectiveness have been proposed.
Similar ideas for additive noise were developed in
(Abramov et al., 2013; Lukin et al., 2014). For SAR data,
approaches to predicting the effectiveness of Lee-like
filters based on statistical features have been proposed,
focusing on predicting the improvement in quality metrics
(Rubel et al., 2015, 2019, 2020, 2021).

In parallel, image quality assessment methods are
developing: full-reference (FR-IQA) and no-reference
(NR-IQA). Modern NR-IQA models based on deep
learning demonstrate high correlation with subjective
assessment (IEEE, 2022; Talebi & Milanfar, 2018), but are
oriented toward general visual quality.

Thus, a gap remains in the literature: there are no
methods for a priori prediction of specific quality metrics
for a given SAR filter.

Methodology

The developed methodology includes adaptation of the
DenseNet-121 architecture for processing single-channel
SAR images and creation of a synthetic data generation
pipeline through histogram matching of Sentinel-2 optical
images with reference Sentinel-1 SAR images.

Model Architecture and Transfer Learning

The proposed model is based on the DenseNet-121
network, pre-trained on the ImageNet dataset. To adapt it
to single-channel SAR images, several modifications were
made:

* The input Conv2d layer was changed from format (3,
64, 7x7) to (1, 64, 7x7) with weight averaging across
channels. This approach preserves the learned filter
responses by combining RGB channel weights into a
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single grayscale-equivalent filter, which is a standard
technique for adapting pre-trained models to single-
channel inputs.

» MaxPool was replaced with AvgPool for better
preservation of texture characteristics (Wei et al., 2022).

» The classification head was replaced with a
regression layer Linear(1024, 1).

A full fine-tuning strategy is applied, where all layers
of the network, including Dense blocks and BatchNorm
layers, are trained jointly. This ensures adaptation of the
model to SAR data specifics and the quality metric
prediction task.

Transfer learning enables utilization of universal
features extracted from ImageNet, ensuring fast
convergence when working with limited SAR scene
datasets.

Table 1 presents a detailed comparison of the original
DenseNet-121 architecture and the modified version for

processing single-channel satellite images.
Table 1. DenseNet-121 modification for SAR filtering quality

prediction
Parameter Original (ImageNet) | Modified (S1-SAR)
Size 224x%224 1024x1024
Channels 3 (RGB) 1 (grayscale)
Type Photo SAR
Tensor [b,3,224,224] [b,1,1024,1024]
Conv Conv2d(3,64,7,2,3) | Conv2d(1,64,7,2,3)
Bias True False
Pool MaxPool2d(3,2,1) AvgPool2d(3,2,1)
Output [b,64,56,56] [b,64,256,256]
DB1 input [b,64,56,56] [b,64,256,256]
DB output [b,256,56,56] [b,256,256,256]
TL1 [b,128,28,28] [b,128,128,128]
DB2 input [b,128,28,28] [b,128,128,128]
DB2 output [b,512,28,28] [b,512,128,128]
TL2 [b,256,14,14] [b,256,64,64]
DB3 input [b,256,14,14] [b,256,64,64]
DB3 output [b,1024,14,14] [b,1024,64,64]
TL3 [b,512,7,7] [b,512,32,32]
DB4 input [b,512,7,7] [b,512,32,32]
DB4 output [b,1024,7,7] [b,1024,32,32]
GAP input [b,1024,7,7] [b,1024,32,32]
GAP output [b,1024] [b,1024]
Linear in 1024 1024
Linear out 1000 1
Task Classification Regression

Synthetic Data Generation
Reference Sentinel-1 SAR Data

To create a statistical reference, denoised Sentinel-1
IW GRD images (VV polarization) are used. p98-clipped
max normalization and Lee filtering (window 7x7) are
applied to obtain a realistic amplitude distribution without
pronounced speckle. Sentinel-1 GRD products are ready-
to-use data with applied corrections and reduced speckle
noise due to multi-look processing (Filipponi, 2019).
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Sentinel-1 GRD products store pixel values in the
amplitude domain, not intensities. The digital number
(DN) for each pixel is calculated as shown in Equation 1
(European Space Agency, 2022):

DN = round[ /%ih |2 XSJ' €]
i=1

where N is the number of looks (5%1 for IW GRD HR
according to the official Sentinel-1 specification (European
Space Agency, 2016)), si is the complex signal of the i-th
look, S is the scaling factor from the Application LUT,
depending on application and range, calculated as
Si = interpolate (6;), where 6; is the incidence angle for
pixel i. Note that N =5 in the formula corresponds to the
geometric number of looks, while ENL = 4.4 (European
Space Agency, 2016) characterizes speckle suppression
effectiveness accounting for correlations  between
neighboring pixels. In this study, we utilize Sentinel-1
Level-l GRD products directly without radiometric
calibration to sigma nought (c®). The pixel values represent
detected amplitude (Digital Numbers), which preserve the
image geometry and noise statistics required for the
proposed learning-based filtering quality prediction
approach. Since the quality metrics (PSNR, SSIM, etc.) are
computed from relative intensity relationships rather than
absolute physical values, the use of DN is sufficient for
this task.

Sentinel-2 Optical Data

Optical images from Sentinel-2 Level-2A (B8 channel,
10 m resolution) are used, which do not contain speckle
noise. The data undergo p98-clipped max normalization to
match the dynamic range with SAR images.

The rationale for using optical imagery as the basis for
synthetic ground truth is as follows: optical images provide
clean geometric structure without speckle contamination,
serving as ideal reference images for quality metric
computation. While the physical mechanisms of optical
reflectance and radar backscattering differ fundamentally,
the proposed approach focuses on learning the relationship
between image texture patterns and filtering quality
metrics, rather than modeling radar physics. Histogram
matching subsequently aligns the radiometric distribution
of optical images with SAR statistics, creating training
samples that are statistically representative of SAR
imagery while preserving the known ground truth
structure. This methodology enables controlled generation
of noisy-clean image pairs essential for supervised learning
of quality prediction.

Data Integration Process

Preprocessed S2-NIR and S1-SAR images are
characterized by statistical features of mean brightness mu
and standard deviation sigma. SAR scenes are clustered by
their features using the k-means algorithm. The optimal
number of clusters was determined using the Calinski-
Harabasz (CH) Index, which evaluates the ratio of
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between-cluster to within-cluster variance. Analysis across
k in [2, 60] revealed that while the global maximum is
achieved at k = 2 (CH = 56.27), such coarse partitioning is
insufficient for capturing the diverse scene semantics
required for effective histogram matching. In the range k in
[50, 60], the CH scores stabilize (22.04—24.38). The value
k = 56 was selected as a local optimum (CH = 23.39) that
exceeds the range mean (22.95). Crucially, this choice
represents a trade-off that ensures sufficient semantic
granularity of scene types while maintaining a constraint of
at least 20 images per cluster, which is necessary for
representative statistical sampling in the synthetic data
generation pipeline. For each cluster, an equal (as far as
possible) number of optical images S2-NIR is selected
according to the minimum Euclidean distance criterion.
Within the cluster, for each S2-NIR image, a
corresponding S1-SAR reference image is randomly
selected, further increasing scene diversity. The final stage
includes histogram matching of optical images with paired
SAR references.

The process of stylizing optical images into SAR-like
images is illustrated in Fig. 1.

s

Clustering of SAR
images based on
statistics (mean,

standard deviation)

Sentinel-1 SAR 0B-clioped
images, 3 pYs-clipped max
,0294“024 px normalization ) Leefiller

Calculation of Histogram matching of Sentinel-2 NIR
distances to centroids, the NIR image toa images stylized to
and assignment to SAR image from the SAR images,

clusters comesponding cluster 1024x1024 px

Sentinel-2 NIR
images,
1024x1024 px

p98-clipped max
normalization

Fig. 1. Scheme of the process for stylizing S2-NIR optical
images into SAR-like images. The process includes sequential
transformation stages: from original optical images through
normalization and clustering to final histogram matching
with S1-SAR references

Histogram Matching Details

For histogram matching, for each optical image I1(x, y),
an S1-SAR reference R(x, y) from the same cluster is
selected and a monotonic transformation (Equation 2) is
applied:

I (%, Y) = Fe " (F (10X, ) (2)
where (X, y) are pixel coordinates in the image, F|, Fr are
empirical cumulative distribution functions (CDF) of
brightness for the original and reference images,
respectively. This monotonic transformation is based on
the principle of preserving rank relationships between
pixels. The function F(I(x,y)) transforms the pixel
brightness into its percentile in the original image, while

F'0) finds the corresponding brightness value in the
reference image for the same percentile. Histogram
matching is a pixel-wise (pointwise) operation that
modifies only intensity values without altering spatial
positions of pixels; consequently, the geometric structure
of the original image remains unchanged. The preservation
of rank order ensures that local contrast relationships are
maintained after the transformation.
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The correctness of histogram matching is demonstrated
in Fig. 2, which shows KDE curves (Kernel Density
Estimation — a non-parametric method for density
estimation) of brightness for the denoised S1-SAR image,
stylized optical, and original optical images. KDE provides
a smooth estimation of data density distribution, allowing
visual comparison of statistical characteristics of images.
The green and red lines practically coincide, indicating
distribution matching after histogram matching, while the
blue line illustrates the original S2-NIR statistics.

Brightness Distribution Comparison

Denoised Sentinel-1
Stylized Sentinel-2
Original Sentinel-2

Density

[ o
Normalized Brightness

Fig. 2. Comparison of brightness distributions for images
(fragments shown in Fig. 3): denoised S1-SAR (b, green line),
stylized S2-NIR after histogram matching (e, red line), and
original S2-NIR (c, blue line).

The effectiveness of the stylization procedure is
demonstrated by comparative analysis of six fragments in
Fig. 3. Visually, it can be observed that the stylized noisy
fragment (f) shows greater photometric similarity to the
original SAR fragment (a) compared to the simply noised
optical fragment (d).

£ =~

(d) S2-NIR Noised

(e) S2-NIR Matched (f) S2-NIR Matched
+ Noised
Fig. 3. Comparison of S1-SAR and S2-NIR fragments at different
processing stages: (a) S1-SAR original, (b) S1-SAR after Lee
filtering, (c) S2-NIR original, (d) S2-NIR noised, (€) S2-NIR
after histogram matching, (f) S2-NIR stylized noised

The final synthetic S2-NIR dataset reproduces the
radiometric characteristics of S1-SAR images while
preserving the geometric structure of optical images,
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providing an appropriate basis for training the DenseNet-
121 model.
Dynamic Speckle Noise Addition

During training, each stylized optical image receives a
new realization of multiplicative speckle noise with
random parameters corresponding to Sentinel-1 SAR
image characteristics. Dynamic noise addition in each
epoch significantly increases data variability and
eliminates the need to store numerous image copies while
maintaining experiment reproducibility.

Speckle noise model and parameterization
The work uses a multiplicative speckle model in
intensities (Equation 3):

Y, y)=Xxy) Sxy), S~Ik=L,0=1/L), (3)
Where X is the true scene intensity, Y is the observed
intensity, S is the speckle multiplier, and L=ENL
(equivalent number of looks).

This parameterization of the gamma distribution

ensures ps = 1 (mean speckle value) and ci =1/L (speckle

variance), which corresponds to the physical properties of
speckle. The coefficient of variation CV (coefficient of
variation), characterizing the relative noise variability, is
determined as shown in Equation 4:

VL VIR @
we oL JL

Experiments used values L € [2,6] characteristic of
Sentinel-1 IW GRD, which is consistent with classical
speckle models (Lee, 1980; Frost et al., 1982; Medeiros
et al., 2003; Singh & Pandey, 2016; Moein & Taban, 2024)
and Sentinel-1 GRD preprocessing methods (Filipponi,
2019). Dynamic addition of speckle noise with random
ENL values in the specified range ensures training of a

model robust to different noise levels.

Implementation details (low-frequency texture
and upsampling)

Noising of stylized images is performed in the intensity
domain to ensure physical correctness of the speckle
model. The process includes conversion from amplitude
representation to intensities, generation of gamma-
distributed speckle noise at reduced resolution to create
large-scale texture variations, upsampling the noise to
original resolution, multiplicative noise application, and
conversion back to amplitude domain followed by
normalization. These stages are integrated into the general
quality assessment scheme shown in Fig. 4.

Calculation of Reference metric
reference

quality metrics MAE
RMSE,
R
Model accuracy
assessment

DenseNet-121 |  Predicted
prediciing metric
quality
metrics

SZNIRimages |
stylized to
S1SAR images |

Speckle
N=F(LL)
al reduced
resolution

Fig. 4. Validation scheme: comparison of model predictions
with real filtering results. Gray blocks denote processing stages
in the intensity domain
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To control the speckle correlation length, a scale
s € (0,1] (Lee, 1980) is u sed: smaller values of s lead to a
larger correlation length (increased spatial correlation),
while larger values of s lead to a finer one. Let the original
image have size HxW. A low-resolution noise map of size
is constructed according to Equation 5:

Ho=|sH |, W, =[ sW |. ®)

On this grid, speckle is independently sampled:
S,(i,J)0 I'(k=L,0=1/L), (5a)
(i, J) Lo Ho ) x {1, W, }. (5b)

Next, bilinear upsampling to the original size is
performed (Equation 6):

S =Upitinear (Sy 1 H,W). (6)
To preserve the statistics of the gamma map after

upsampling, renormalization is applied. First, the statistics
are calculated (Equations 7 and 8):

K., =mean(s,), o, =std(S,), ()
B = mean(g), o = std(g“) , 8)
and the final multiplier is formed according to Equation 9:
S = T
§= —0g,1 + [s,| - 9)

S~

The noisy image is obtained by applying multiplicative
noise according to Equation 10:

Y=X0©Ss. (10)

The optimal value s = 0.6 was determined empirically
based on analysis of the autocorrelation function (ACF) of
reference SAR images and experiments with varying s
(0.2, 0.4, 0.6, 0.8, 1.0). Detailed ACF analysis for different
values of s is presented in the supplementary materials to
the article. The selected value minimizes the discrepancy
between ACF of synthetic and real Sentinel-1 data,
ensuring visual similarity of synthetic noisy images to real
ones.

This approach ensures generation of images that are
radiometrically and in terms of noise characteristics
statistically equivalent to real Sentinel-1 SAR data, while
preserving the geometric structure of the original optical
images.

Normalization of noisy images

The final stage of the noising process is normalization
of the noisy images (see Fig. 4) to eliminate dependence of
predictions on radiometric image characteristics. This is
critically important for correct model training, since
without normalization the model might learn to predict
filtering quality based on simple brightness analysis rather
than complex texture and structural image characteristics.

Normalization is performed by dividing each noisy
image by its mean value (Equation 11):

|

Inoisy_norm = ﬁ:syyl (11)
where Wi, 1S the mean brightness value of the noisy
image. Accordingly, clean (reference) images are

normalized by the same coefficient (Equation 12):
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| _ _clean

clean_norm — . (12)

Inoisy

Such normalization ensures that all images have unit
mean brightness value, which eliminates the possibility for
the model to use radiometric characteristics as an indicator
of noise level. The model is forced to analyze more
complex spatial patterns and texture features for a priori
prediction of filtered image quality, which increases its
generalization ability and robustness to lighting variations
and scene radiometric characteristics.

Experimental Setup
Data Splitting

The synthetic dataset (1910 stylized S2-NIR images)
was split in an 80/20 ratio into training (1528 images) and
test (382 images) sets. S1-SAR images (1522 images) were
used only as references for histogram matching.

Models were trained on the training set with validation
on the test set. Final evaluation was performed on models
with the best results on training data to ensure correct
assessment of generalization ability.

Ground Truth Generation and Quality Metrics
Data Processing Domains

Data processing is performed in domains aligned with
signal physics and target product format. The Sentinel-1
IW GRD product is published in the amplitude domain
(DN  proportional to echo-signal  root-mean-square
amplitude) (European Space Agency, 2022), and it is this
product that undergoes filtering and visual assessment.
Accordingly, references and target quality metrics (PSNR,
WSNR, SSIM, MS-SSIM, FSIM) are calculated in the
amplitude domain: this ensures metric comparability with
GRD images, correct result interpretability, and
consistency with visual perception (Wang et al., 2004). In
contrast, speckle noise modeling and suppression are
performed in the intensity domain, where the standard
multiplicative model Y=X-S holds with gamma-
distributed multiplier at L = ENL. For data synthesis and
application of classical filters, the image is converted from
amplitude to intensity (by squaring), noising and filtering
are performed, after which the result is returned to the
amplitude domain for assessment. This decomposition of
stages simultaneously preserves physical correctness of the
noise model in intensities and ensures that the final quality
assessment is conducted in the same domain as the original
GRD product, providing direct visual comparability with
the original amplitude image.

Procedure for Generating Ground Truth Metric Values

Ground truth metric values are formed as follows:
multiplicative speckle noise is added to stylized optical
images (in the amplitude domain), for which the data is
converted to the intensity domain (by squaring), where a
gamma-distributed multiplier is applied, after which the
result is converted back to the amplitude domain. The



Al-Senaikh R., Rubel O. Vkpaincexuii sccyprnan oucmanyitinozo 3ondyeanns 3emni, 2025, 12(3), 4-15

resulting noisy images are then filtered using one of the
investigated methods in the intensity domain. Ground truth
metric values are calculated by comparing the filtered
images (in the amplitude domain) with the original stylized
images without noise. The model is trained to predict
expected quality metric values based on noisy images in
the amplitude domain, which ensures correspondence with
human image perception.

Model Performance Metrics

Three metrics were used to assess the quality of model
predictions, which measure the accuracy of predicting
target image quality metric values:

Mean Absolute Error (MAE) (Equation 13):

1y .
vAE -3y, -
N iz

where y; are the true quality metric values, y; are the values
predicted by the model, N is the number of observations.
Root Mean Square Error (RMSE) (Equation 14):

RMSE:J%%(%_%)Z- (14)
i1

Sensitive to large prediction errors.
Coefficient of Determination (R?) (Equation 15):

R2—1_ zi’il(Yi - yi)z
S -9)’ (15)
where § is the mean value across all true yi values.

Characterizes the fraction of variance explained by the
model (higher = better).

(13)

Image Quality Metrics

The following are the image quality metrics that the
model predicts for each filter type. These metrics assess
the quality of filtered images relative to reference (noise-
free) images:

The PSNR (Peak Signal-to-Noise Ratio) metric
measures the ratio of the maximum possible signal value to
noise power (Equation 16):

PSNR = 20Iog10( MAX, j (16)

JMSE )’
1 2 .
where MSE =|_|—WCZ(Idenoised —lgean ) i the mean square

error across all pixels, channels, and spatial dimensions,
MAX;, is the maximum intensity value (usually 1.0 for
normalized images). Units: dB (higher = better).

The WSNR (Weighted Signal-to-Noise Ratio) metric is
calculated in the frequency domain using the Contrast
Sensitivity Function (CSF) for weighting different
frequency components (Equation 17):

2

Z c,h W|SC h,w| ><Wh,w
2

chw|N XWh,w

where Schw are the spectral components of the original
image, Nchw are the spectral components of noise
(difference between original and processed image), Whw IS

WSNR =10log,, (17)

ch,w|
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the CSF weighting function for spatial frequencies. Units:
dB (higher = better).

The SSIM (Structural Similarity Index Measure) metric
assesses structural similarity between two images by
analyzing brightness, contrast, and structure (Equation 18):

(2,1, +C))(20,, +C,)
(W} +1; +C)(0; +0;+Cy)" (18)
where py, My are the mean brightness values of images x
and v, Gi,ci are variances (contrast), o, iS covariance

between x and y (structure), C;=0.012=0.0001,
C,=0.032=10.0009 are stabilization constants for images
in range [0, 1]. Value range: [-1,1] (where 1 means perfect
match).

The MS-SSIM (Multi-Scale Structural ~Similarity
Index) metric is calculated as weighted product of SSIM at
different scales (Equation 19):

4
MS-SSIM (X, y) = l‘g[ssnw x5, ypI", (19)
]:
where x;, y; are images at scale j after downsampling
(starting from original size), w; are weighting coefficients
with  values wp=0.0448, w;=0.2856, w,=0.3001,
ws = 0.2363. Each subsequent image is reduced by 2 times
using average pooling. Value range: [0,1] (where 1 means
perfect match).
The FSIM (Feature Similarity Index) metric uses phase
and gradient information in feature space (Zhang et al.,
2011) (Equation 20):

FSIM =Y

SSIM (x,y) =

(PC,, xSC,,)x (PC, xSC,)

(PC, xSC,)+(PC,x5C,)’ (20
where PC,, (Phase Congruency) is phase congruency, SCp,
(Similarity of Gradient) is gradient similarity, and indices
m and n denote two similarity measures. Value range: [0,1]
(where 1 means perfect match).

Training Settings

Models were trained in PyTorch using NVIDIA RTX

4090 GPU. Hyperparameters:
Optimizer: Adam (1 = 10%)

» Epochs: 120

» Batch size: 4 images (1024x1024)

* Loss function: MSE

» Gradient accumulation: 2 steps

For each combination of filter (6 types) and quality
metric (5 types), independent training was conducted with
dynamic speckle noise addition (ENL € [2,6]).

Epoch duration varied from 43 to 210 seconds
depending on the filter-metric combination. Total training
time for all 30 experiments was approximately 60 hours.
Full fine-tuning strategy of DenseNet-121 was applied.

Evaluation Methodology

Model prediction accuracy assessment (Fig. 4) is based
on comparing its output values with ground truth. Ground
truth metrics are formed by adding speckle noise to
stylized images, followed by filtering and calculation of



Al-Senaikh R., Rubel O. Vkpaincexuii sccyprnan oucmanyitinozo 3ondyeanns 3emni, 2025, 12(3), 4-15

quality metrics relative to original clean images.
Simultaneously, the same noisy images are fed to the
model to obtain predictions. The accuracy of the final
comparison is assessed using MAE, RMSE, and R2.

Reproducibility and Availability

Data. Original Sentinel-1 (IW GRD) and Sentinel-2
(L2A) scenes were obtained from the Copernicus Data
Space Ecosystem platform. Sentinel-2 data were
segmented into 1024x1024 pixel patches with histogram
matching of optical images to SAR radiometry. The
processed dataset is hosted in the Zenodo repository:
https://zenodo.org/uploads/17253925. After publication, a
permanent DOI will be obtained for citation.

Code. Python implementation is available in the
GitHub repository: https://github.com/rsenaikh/Predicting_
Quality_after_Noise_Removal with reproduction instructions.

Experiments. All experiments were conducted on
NVIDIA RTX 4090 GPU using PyTorch and NumPy.
Detailed training settings are provided in Section 4.

Ethics. Sentinel-1/2 data are distributed under open
Copernicus license. Ethical approvals are not required.

Results and Discussion
Training Dynamics

The training curves (Fig.5) demonstrate two key
phases. The sharp initial error reduction is explained by
effective transfer of low-level texture features from the
ImageNet pre-trained model (Wanjiku et al., 2022), where
universal features (edges, textures) ensure fast convergence
in early stages, minimizing the need for additional
regularization. This is followed by a phase of asymptotic
approach to values on the order of 10-°, with synchronous
dynamics of training and test curves without divergence
indicating absence of overfitting. This behavior confirms
the effectiveness of the full fine-tuning strategy, where all
layers, including Dense blocks and BatchNorm layers, are
adapted jointly, ensuring comprehensive tuning to SAR
data specifics and the regression task.

Training and Validation Loss over Epochs (Log Scale)

—— Train Loss

10-2 Validation Loss

Loss (log scale)

1074 '\»{MMN | .
S ‘\’A/\/\W_L\W“-y«j\,./\,q /‘\f\/\J\M

107

0 20 40 60 80 120

Epoch

Fig. 5. Model training dynamics (Kuan filter, WSNR metric):
loss function on training and test sets

100

Qualitative Examples
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Fig. 6 shows model predictions for a fragment
processed with Lee and Gamma MAP filters. The
predicted values demonstrate high accuracy with absolute
errors of 0.036 dB and 0.037 dB respectively, illustrating
the feasibility of the proposed approach for a priori
prediction of filtered image quality.

(b) Noisy Image

(c) Lee Filter (d) Gamma MAP Filter
o b ol " fé"v_: s

Lo - > e B

Lee Filter Results:

Gamma MAP Results:

Predicted PSNR: 20.74 dB
Reference PSNR: 20.78 dB
Absolute Error: 0.036 dB
Relative Error: 0.17%

Predicted PSNR: 20.08 dB
Reference PSNR: 20.04 dB
Absolute Error: 0.037 dB
Relative Error: 0.19%

Fig. 6. Comparison of predicted and true PSNR values for Lee
and Gamma MAP filters on test images. Shown are original noisy
images, filtering results, and corresponding quality metric values

Quantitative Results

Table 2 contains MAE, RMSE, and R? values for all
combinations of filters and quality metrics. All results are
obtained on the test set of 382 stylized images sized
1024x1024 pixels.

Table 2. Prediction accuracy of filtering quality
Filter Stat | PSNR | SSIM S'\QISM FSIM | WSNR
Gamma | MAE 0.2884 |0.0132 |0.0054 |0.0021 |0.1402
Map RMSE 0.4475 |0.0222 |0.0082 |0.0027 |0.1944
R? 0.9886 |0.9693 |0.9972 |0.9826 |0.9972
MAE 0.1077 |0.0043 |0.0023 |0.0023 |0.0459
Lee RMSE 0.1425 |0.0058 |0.0037 |0.0037 |0.0635
R? 0.9864 |0.9777 |0.9518 |0.9546 |0.9966
MAE 0.0587 |0.0064 |0.0023 |0.0025 |0.0442
E”Lﬁ”‘;e RMSE 0.0803 |0.0086 |0.0031 |0.0044 |0.0575
R? 0.9957 |0.9343 |0.9605 |0.9364 |0.9965
MAE 0.0805 |0.0040 |0.0019 |0.0025 |0.1318
Frost  |RMSE 0.106 |0.0054 |0.0029 |0.004 |0.1822
R? 0.9949 |0.9825 |0.9756 |0.9609 |0.9911
MAE 0.2391 |0.0053 |0.0025 |0.0025 |0.2781
Srad RMSE 0.2964 |0.0073 |0.0038 |0.0038 |0.3582
R? 0.9523 |0.9644 |0.955 |0.9577 |0.9429
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MAE 0.0514 ]0.0039 |0.0021 |0.0027 |0.0486
Kuan RMSE 0.0722 | 0.0054 |0.003 0.004 0.0637
R? 0.996 0.9812 0.9666 |0.9519 |0.9963

The average coefficient of determination R? across all
filter-metric combinations is 0.9732 + 0.0201.

Scatter plots (Fig. 7) show predicted and true values of
quality metrics for selected filter-metric combinations.
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Fig. 7. Scatter plots of predicted vs. true values for selected
quality metrics (PSNR, WSNR, SSIM, MS-SSIM, FSIM)
with filters providing the best prediction accuracy.

Plots of normalized mean absolute error (NMAE)
dependence on noise level (Fig. 8) show the change in
prediction error depending on the equivalent number of
looks (ENL) in the range [2, 6].

Camma Map Lee Enhanced Lee

AR
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Fig. 8. Dependence of normalized prediction error on noise
level (ENL)

Prediction error histograms (Fig. 9) show the
distribution of errors for different filter-metric
combinations.
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Fig. 9. Prediction error histograms for different filter-metric
combinations

Results Analysis

The results show high values of the coefficient of
determination R? for most filter-metric combinations
(R?2>0.97 for most combinations). The maximum value
R?=0.9972 was achieved for MS-SSIM and WSNR
metrics of the Gamma MAP filter. The minimum value
R? = 0.9343 is observed for the SSIM metric and Enhanced
Lee filter.

The aggregated distribution of values across all filter-
metric pairs is shown in the heatmap (Fig.10). The
heatmap reveals distinct patterns: maximum values occur
for noise-sensitive metrics (PSNR, WSNR), while
structural metrics (SSIM, MS-SSIM, FSIM) exhibit lower
R? values.

R? Correlation Heatmap: Predicted vs True Quality Metrics

[eEVONERVENE 0.9886  0.9972  0.9693  0.9972  0.9826
LR 09864  0.9966  0.9777
VBN BCER  0.0957  0.9965 |« 0.9343 0.9605  0.9364

Frost JUERES] 0.9911 0.9756 0.9609

SAR Filters

Kuan KL 0.9963 0.9812 0.9666

Srad 0.9429  0.9644 09550  0.9577

& &
& & & %@‘b &
&

Quality Metrics
Fig. 10. Heatmap of coefficient of determination R?
for different filters and quality metrics
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Detailed results by quality metric types are shown in
Table 3, presenting average R? values and ranges for each
metric.

Table 3. Prediction accuracy analysis by quality metric types

Metric Average R? Range
PSNR 0.987 [0.952, 0.996]
WSNR 0.987 [0.943, 0.997]
SSIM 0.968 [0.934, 0.982]
MS-SSIM 0.969 [0.952, 0.997]
FSIM 0.957 [0.937, 0.983]

Results breakdown by filter types is presented in
Table 4, containing average R? values and ranges for each
filter.

Table 4. Prediction accuracy analysis by filter types

Filter Average R? Range
Gamma MAP 0.987 [0.969, 0.997]
Kuan 0.978 [0.952, 0.996]
Frost 0.978 [0.960, 0.995]
Enhanced Lee 0.963 [0.934, 0.997]
Lee 0.973 [0.952, 0.997]
SRAD 0.955 [0.943, 0.964]

At the filter level, the lowest R? values are observed for
SRAD compared to other filters, which may be related to
the specifics of anisotropic diffusion requiring more
complex modeling of spatial gradients. In contrast, Kuan,
Frost, and Enhanced Lee filters demonstrate high R? > 0.99
values for noise-sensitive metrics, explained by more
predictable distortion patterns created by adaptive methods
based on local scene statistics (Lee, 1980).

At the metric level, FSIM depends on phase
congruency and texture features, going beyond amplitude
and contrast distortions characteristic of PSNR/WSNR and
partially SSIM/MS-SSIM  (Wang et al., 2004).
Accordingly, FSIM prediction proves most challenging,
reflected in relatively lower R? values.

These patterns are consistent with DenseNet-121
properties. Feature concatenation within dense blocks
preserves early maps containing local statistics (means,
variances, texture patterns), supporting high R? for noise-
sensitive PSNR/WSNR metrics. As the network deepens,
receptive  field  increases, forming  multi-scale
representations that contribute to SSIM/MS-SSIM
accuracy. Together, this explains high R? for most filters
and relative difficulty in predicting SRAD, requiring
precise modeling of anisotropic diffusion processes.

Scatter plots demonstrate nearly linear correspondence
between predictions and true values with narrow
dispersion across the entire metric range, indicating
absence of bias and high model calibration.

NMAE dependence plots on ENL show weak
sensitivity of error to speckle level in the [2, 6] interval and
stability of estimates across samples, indicating robustness
to noise variations.

Error histograms are approximated by normal
distribution with zero mean and no pronounced
asymmetry, ruling out systematic biases and confirming
correct model specification.
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Recommendations for Metric Selection

Based on the obtained results and metric
characteristics, the following recommendations for metric
selection depending on application context can be
formulated:

* PSNR and WSNR are recommended for applications
where overall noise suppression level is the primary
concern, such as preliminary scene assessment or batch
processing quality control. WSNR additionally accounts
for human visual perception through frequency weighting.

+ SSIM and MS-SSIM are preferable for tasks
requiring preservation of structural information, such as
change detection, object recognition, or visual
interpretation. MS-SSIM provides more robust assessment
across different scales and is recommended for
heterogeneous scenes.

* FSIM is recommended for applications sensitive to
fine texture and phase information, such as interferometric
processing preparation or detailed terrain analysis.
However, its prediction shows lower accuracy, suggesting
careful validation for critical applications.

« For general-purpose filter selection, a combination of
PSNR (noise assessment) and SSIM  (structure
preservation) provides a balanced evaluation approach.

Comparison with Baseline Methods

The proposed approach differs from existing statistical
methods (Rubel et al.,, 2019, 2020, 2021) based on
calculating 28 expert features. Direct quantitative
comparison with these methods is difficult since they focus
on predicting the relative improvement in quality metrics,
while the proposed model predicts absolute values.
Nevertheless, the fundamental advantage of deep learning
lies in automatic extraction of hierarchical features,
eliminating the need for labor-intensive manual design and
ensuring higher generalization ability.

Key differences:

» End-to-end hierarchical feature extraction by deep
neural network instead of manual design and calculation of
fixed statistical characteristic set.

* Prediction of final absolute quality metric values
rather than their relative improvement (gain), which is a
more complex and practically significant task.

« Application of transfer learning based on DenseNet-
121 deep convolutional network adapted for processing
single-channel SAR images of high resolution (1024x1024
pixels).

 Unified and robust model capable of predicting
quality for a specific filter and adapting to variable noise
levels (ENL € [2,6]) without additional training.

+ Use of innovative synthetic data generation pipeline
based on histogram matching of optical (Sentinel-2) and
SAR (Sentinel-1) references for creating photorealistic
training samples.

+ Application of complex speckle noise model with
controlled spatial correlation and data normalization to
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ensure prediction invariance to scene radiometric
characteristics.

Results (R? = 0.9886 for PSNR of Gamma MAP filter,
where PSNR is chosen as the most universal quality metric
and Gamma MAP as one of the most effective adaptive
filters) confirm the effectiveness of deep learning for a
priori prediction of absolute quality metric values for SAR
image filtering, which is a more complex and practically
significant task compared to predicting relative

improvement.

Limitations

Despite high results, the approach has limitations:

« Synthetic nature of data limits generalizability to real
SAR scenes with geometric distortions (layover, shadow,
foreshortening), requiring additional validation on real
data.

» Fixed image size (1024x1024 pixels)
applicability to scenes of arbitrary size.

» Noise range is limited to typical Sentinel-1 IW GRD
conditions (ENL € [2,6]), which may reduce accuracy for
other SAR systems.

 Synthetic nature of data based on Sentinel-2 optical
images does not account for SAR-specific geometric
distortions (layover, shadow, foreshortening) inherent to
complex terrains. This is a key limitation requiring
additional validation on real SAR data containing such
artifacts to assess model generalization ability.

» The physical mechanisms of optical reflectance and
radar backscattering differ fundamentally. While histogram
matching aligns statistical distributions, it cannot fully
replicate the scattering behavior of different surface types
in SAR imagery. This may affect model performance on
scenes where optical-radar contrast relationships differ
significantly from the training data.

« Potential contrast inversion between optical and radar
images (e.g., water bodies appearing bright in optical but
dark in SAR, or urban areas with different backscattering
characteristics) represents an unexplored factor that may
influence stylization quality and subsequent prediction
accuracy.

» The study focuses exclusively on VV polarization;
applicability to VH polarization and cross-polarization
scenarios remains to be validated.

limits

Future Perspectives and Research

The obtained results open several directions for further
development:

» Real Data Validation: Extension of research to real
Sentinel-1 SAR scenes with geometric distortions (layover,
shadow, foreshortening) to assess model generalizability.

* Noise Range Extension: Model adaptation for operation
with extreme noise levels (ENL < 2 and ENL > 6)
characteristic of other SAR systems (ALOS PALSAR,
TerraSAR-X).

» Multispectral Data: Extension of approach to
complex SAR images and polarimetric data for a priori
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prediction of filtered image quality in different polarization
channels.

» Adaptive Architectures: Investigation of attention
mechanisms and transformer architectures to improve
prediction accuracy for complex metrics like FSIM.

* Pipeline Integration: Implementation of the model
in operational SAR data processing chains for automatic
selection of optimal filtering parameters.

» Radiometric Calibration: While this study
demonstrates effectiveness on GRD data with DN values,
future implementations intended for physical parameter
retrieval should investigate the impact of radiometric
calibration (conversion to ¢° or y°) on prediction accuracy.

+ Polarization Diversity: Validation of the approach
on VH polarization data and investigation of cross-
polarization scenarios to extend applicability to dual-
polarization Sentinel-1 products.

* Pipeline Performance Evaluation: Theoretical and
experimental assessment of end-to-end processing pipeline
performance, including computational efficiency analysis
and comparison with direct filtering approaches in terms of
time-quality trade-offs.

» Contrast Inversion Analysis: Systematic
investigation of the impact of optical-radar contrast
inversion on stylization quality and prediction accuracy
across different land cover types.

Conclusion

A method for a priori prediction of filtered Sentinel-1
SAR image quality based on adapted DenseNet-121 has
been developed. This approach predicts absolute values of
quality metrics (PSNR, WSNR, SSIM, MS-SSIM, FSIM)
for a specific filter before its application.

Experiments with six classical filters achieved high
accuracy indicators: R2>0.97 for most combinations
(Table 2).

Key contributions:

» Formulation of the task of a priori prediction of
specific quality metrics for a given filter.

» DenseNet-121 adaptation to single-channel SAR
inputs with full fine-tuning.

« Synthetic data generation pipeline through histogram
matching of optical and SAR images with dynamic speckle
noise addition.

Solved tasks:

» Developed a physically consistent pipeline with
processing in intensities (for noise and filtering) and
assessment in amplitudes (for metrics), matching the
Sentinel-1 GRD product format.

» Constructed a SAR-like synthetic dataset by
histogram matching Sentinel-2 (B8) to Sentinel-1
references, with dynamic, spatially correlated speckle
generation (ENL & [2,6]) and per-image normalization.

» Adapted and fully fine-tuned DenseNet-121 for
single-channel 1024x1024 inputs (modified stem/pooling
and regression head) for metric value prediction.

» Generated ground-truth for six classical filters
(Gamma MAP, Lee, Enhanced Lee, Frost, SRAD, Kuan)
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across five metrics (PSNR, WSNR, SSIM, MS-SSIM,
FSIM) and trained 30 specialized models.

» Demonstrated robustness to noise level variation and
scene diversity, with near-linear calibration of predictions
versus ground truth.

Quantitatively, the best results reached R?=0.997
(Gamma MAP: MS-SSIM/WSNR), with an average across
all filter—metric pairs of R?=0.9732 +0.0201 and low
absolute errors (see Tables 2—-4).

Practical implications:

» A priori ranking and selection of filters and their
parameters without running expensive despeckling.

» Early scene triage and compute budgeting in
operational SAR processing chains.

« Straightforward integration as a fast pre-filtering
module; code and data are publicly available for
reproduction and deployment.

This approach enables optimization of filter selection

before performing resource-intensive  computations,
reducing costs and increasing SAR data processing
efficiency.

Future research directions:

» Validation on real SAR scenes accounting for
geometric distortions.

 Extension of noise parameter ranges and image sizes.

« Investigation of alternative architectures and multi-
level inputs.

» Assessment of prediction uncertainty and joint filter
ranking.
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Buecok aBTopiB: Konmentyanizamis — P. Anp-Cenaiix Ta
O. Py6ens; merononorist — P. Anp-Cenaiix; dopmansHuii anami3
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MiATOTOBKA OPHUTiHATIBHOTO TeKCTy — P. Anb-CeHaiix; HanmMcaHHs
— peneH3yBaHHA Ta penaryBaHHs — P. Anmb-Cenaiix ta O. PyOens;
Bisyanmizamis — P. Anp-CeHaiix. Bci aBTOpH mnpounTamn Ta
HOTOIMIINCS 3 OIyOJIiIKOBaHOIO BEPCIEI0 PYKOTIHUCY .
®inancyBanns: Lle mocmimkeHHS HE OTPUMAJO 30BHIIIHBOTO
(iHaHCyBaHHS.

JoctynHicte panux: OOpoOneHuii HaOip NaHUX NOCTYIHHUH y
pemosutopii Zenodo (https://zenodo.org/uploads/17253925). Kox
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nporpamHoi peanizanii Ha Python moctymmmit y pemnosuropii
GitHub

(https://github.com/rsenaikh/Predicting_Quality _after_Noise_Re
moval).

Hoasixku: ABTOpH BHCIOBMOIOTE mupy moasky Copemicus Data
Space Ecosystem 3a HagaHHS BIIKPHTOTO IOCTYNy OO IaHHX
Sentinel-1 Ta Sentinel-2. Takox BASYHI pelEH3EHTAM Ta
pemakTopaM 3a I[iHHI KOMEHTapi, peKOMeHZamii Ta yBary [o
poboTu.

Konduiktu intepeciB: ABTOpH 3asBIAIOTH, MO HE MAalOTh
KOHQUTIKTY iHTEpeciB.
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TIPOTHO3YBAHHA AKOCTI BIA®UIbTPOBAHNX 30BPAXXEHb 3 BUKOPUCTAHHSAM TPAHCOEPHOI'O HABUYAHHA
HA CIIEKJI-IIYMI SENTINEL-1 3 DENSENET-121

P. XK. Anp-Cenaiix™*, https://orcid.org/0000-0002-8059-4237

O. C. Py6ens, https://orcid.org/0000-0001-6206-3988

Hayionanvnuii aepoxocmiunuii ynieepcumem "Xapxiscokuil asiayivinui incmumym”, 8yn. Baouma Manvka, 17, Xapxis, 61000, Ykpauna
Criexi-myM, TpUTaMaHHUIA 300pakeHHAM pajapa i3 cHHTe30BaHOW anepTyporo (PCA), moriprrye sKicTh 300pakeHb Ta YCKIJIAIHIOE
ABTOMATH30BAaHMI aHANli3 y 3aCTOCYBaHHAX AMCTAHIIHHOTO 30HAYBaHHA 3emui. KinpkicHa omiHka pe3ynbTariB ¢imsTpamii moTpedye
00YHCIICHHS METPHK SIKOCTI BITHOCHO €TAJIOHHUX 300pa)KeHb, sIKi HEJOCTYIHI B onepamniiinux crieHapisx PCA. VY miil cTaTTi BUKIaICHO
METO/1 anpiopHOTo MPOTHO3YBaHHS METPHUK sAKOCTI BindinerpoBanux PCA-300paxens Sentinel-1 go 3acrocyBants GinbTpiB mpuIyLICHHS
cneki-uryMy. Ha BigMiHy BiI iCHYFOUMX MIAXOIIB, IO MPOTHO3YIOTH BITHOCHE MOKPAIICHHS SKOCTI, 3aPONOHOBAHUNA METO]] MPOTHO3YE
abcomotHi 3HaueHHs 1t MmeTpuk (PSNR, WSNR, SSIM, MS-SSIM, FSIM) mns koHkpeTtHoro ¢inbTpa, mio 3adesnedye mnpsime
MOPIBHAHHA Ta palioHaJbHHH BHOIp (impTpa. MeTOIONOTII BHKOPUCTOBYE TpaHCc(hEpHE HAaBYAHHS 3TOPTKOBOI HEHPOHHOI Mepexi
DenseNet-121, momepennso HaBueHoi Ha ImageNet, amanrtoBaHoi mis onHOkaHaNbHMX PCA-BXOMIB HUIIXOM  apXiTEKTYpPHHX
mMonudikauiif, BKIoyaodu TpaHchOpMallilo BXITHOTO Iapy, ONTHMI3aLiio IMyJiHry Ta 3aMiHy BHUXIJHOTO perpeciiiHoro mapy. Houii
KOHBEEP TeHepallii CHHTeTUYHUX JaHUX BHKOPUCTOBYE 3iCTAaBJICHHs TicTorpaM onTuuHuX 300paxeHp Sentinel-2 3 eranonnumu PCA-
3HiMKamu Sentinel-1 st cTBOpeHHs HaBUANBbHHX 3pa3KiB i3 30CpEeKEHHSIM CTAJOHHUX JaHWX. J[MHaMiyHe [OJaBaHHS ramma-
po3mnoaineHoro crekia-urymy 3i 3MinauM ENL € [2, 6] migBuiiye BapiaTUBHICTh JaHHUX Ta CTIHKIiCTh Moneni. ExcriepumeHTH 3 mricteMa
wracnaaumu ¢imsrpamu (Gamma MAP, Lee, Enhanced Lee, Frost, SRAD, Kuan) geMOHCTpYIOTh BUCOKY TOYHICTH IPOTHO3YBAHHS LIS
Bcix koMOiHauiii ¢inerp-merpuka. Koedimient nerepminanii R? nocsrae 0,997 mis nHaiikpaumx komOiHamiii Ta nepesuinye 0,97 mis
6utpmmocti 3 30 HaBueHux moxened. CepenHi abCOMOTHI MOXUOKU MporHo3yBaHHS He nepeBuinyioTh 0,29 nb mius PSNR Ta 0,014 ms
SSIM ms Beix mportecroBanux koHGirypamiit. Ilinxin 3abe3nedye anpiopHe IPOrHO3YBaHHS SIKOCTI Oe3 eTayo HHUX 300pa)keHb, Jarouu
3MOry ONTHMi3yBaTu poboui mporiecu 00poOku PCA-maHuMxX Ta IUIaHYBaHHS PECypCiB 0 BHUKOHAHHS PECYPCOMICTKHX —OIepariit
¢urbTparmii.

KunrouoBi ciioBa: cnexi-uym, Sentinel-1, MmeTpuku sikocTi 300paskensb, DenseNet-121, TpancdepHe HaB4aHHS.
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