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Narrow-band spectral indices are quite informative and important in various applications of remote sensing — to assess the condition
of vegetation, soils, water bodies and other land surface formations. However, direct measurement of narrow-band spectral indices
requires hyperspectral imaging. But most of modern multispectral aerospace imaging systems are wide-band. Accordingly, it is not
possible to calculate the narrow-band index directly from wide-band remote sensing data. This paper discusses approaches to the
narrow-band spectral indices restoration by wide-band remote sensing data using statistical models of interrelations of narrow- and
wide-band indices itself, of source wide-band and narrow-band signals in close spectral bands, as well as of land surface reflectance
quasi-continuous spectra translation from wide bands to narrow ones.

The experimental accuracy estimation of narrow-band spectral indices restoration by wide-band multispectral satellite image is
performed. Three most complicated narrow-band spectral indices, which covering a range of spectrum from visible to short-wave
infrared, were considered, namely — the transformed chlorophyll absorption in reflectance index (TCARI), the optimized soil-
adjusted vegetation index (OSAVI) and the normalized difference nitrogen index (NDNI). All three mentioned methods for narrow-
band spectral indices restoration are analyzed. The worst result is demonstrated for regression-restored signals in spectral bands, and
the best result is for the spectra translation method. Therefore, the method on the basis of spectra translation is recommended for
practical implementation.
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Introduction

The spectral resolution of remote sensing data plays
an important role in resource and environmental
applications. The high spectral resolution allows to
analyze the fine structure of spectra of terrestrial
formations. Such analysis provides a more accurate and
reliable determination of ones’ type and condition
(Agapiou, Hadjimitsis & Alexakis, 2012).

One of important tools for spectra analysis in remote
sensing are various spectral indices — i.e. non-linear
ratios of the spectral reflectance p, in different spectral
bands, where / denotes the radiation wavelength (Xue &
Su, 2017). The best-known example of a spectral index
is the normalized difference vegetation index (NDVI)
(Huete & Jackson, 1987). In the case of high spectral
resolution it is possible to use not wide-band, but more
accurate narrow-band spectral indices, for example, a
structure insensitive pigment index (SIPI) (Penuelas &
Gamon, 1995).

The remaining part of paper is organized as follows.
The next section formulates the problem statement, then
the methods used to convert wide-band indices into
narrow-band ones are described, after it the accuracy of
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obtained results is evaluated, and finally the research
conclusion is made.

Problem

The  ground-based precision spectrometric
measurements, as well as hyperspectral aerial and
satellite imagery, are used to obtain the narrow-band
spectral indices (Thorp, Tian, Yao & Tang, 2004).
However, the most of airborne and satellite imaging
systems are multispectral now, that means ones are not
intended for registration of narrow-band spectral indices.
On the other hand, the narrow-band indices are more
preferable for characterization of agricultural crops and
other plants (Thenkabail, Smith & De Pauw, 2002). For
instance, the narrow-band indices produce more reliable
regressions with the biophysical parameters studied
(Siegmann, Jarmer, Lilienthal, Richter, Selige & Hofle,
2013). Thus, there is an topical and important challenge
of restoring the values of narrow-band spectral indices
by wide-band remote sensing data.

Methods
The direct simulation of biophysical processes

resulting in certain spectral reflectance of vegetation and
other land covers is most preferable. A similar approach



S. Stankevich. Vkpaincuokuii srcyprnan oucmanyitinozo 3ondyeanns 3emni, 2022, 9 (1), 4-7

is described in (Cundill, Van der Werff & Van der
Meijde, 2015). However, in real world condition, as a
rule, there is insufficient data for satisfactory accuracy of
one’s application. At the same time, a certain similarity
of spectral responses of the narrow-band hyperspectral
and broadband multispectral imaging systems makes it
possible to expect the statistical cross-coupling of their
signals. Three sequentially more complicated methods
for relying on such dependencies are discussed below.

Spectral bands interrelations

The simplest and native way is to determine
relationships between wide-band and narrow-band
spectral signals. The desired relationship is expected to
be stochastic because the composition of the reflective
covers or their mixes within each pixel is random.
Regressional dependence of the narrow-band reflectance
on single or more wide-band ones is constructed (Theiler
& Wohlberg, 2013). A simple linear regression is well
adequate if similar spectral bands are selected (Heo &
Fitzhugh, 2000).

Spectral indices interrelations

A more complex model assumes the restoration of
regressional dependence between spectral indices.
Analogues of narrow-band spectral indices are built on
the basis of similar wide bands, which are selected in the
same way as in the previous case. When several wide
bands are involved to emulate a single narrow-band
signal, they are weighed inversely to distance inside
spectrum.

Spectral reflectance interrelations

The most accurate is the method of spectra
translation (Popov, Stankevich & Kozlova, 2007). The
reference spectra are extracted from the spectral library
by results of wide-band spectral signatures classification.
Any necessary narrow-band signal can be calculated
on the basis of reference spectra. If the soft-type
classification is applied, then the assigned reference
spectra are weighed proportionally to their fractions or
confidences. Narrow-band spectral indices are calculated
by the corresponding designated narrow-band signals.

Materials

Testing of methods for determining narrow-band
spectral indices by wide-band remote sensing data was
performed using actual both hyperspectral and
multispectral satellite imagery. Hyperspectral Hyperion
and multispectral ALI simultaneous images from the
EO-1 satellite system (Ungar, Pearlman, Mendenhall &
Reuter, 2003) were acquired over the same territory
(Fastov district, Kiev region, Ukraine). Calibrated and
georeferenced level 1T images were preprocessed,
atmospherically corrected (Cetin, Musaoglu & Kocal,
2017), converted into surface reflectance and
geometrically stacked one with another (Fig. 1).

Inside stacked ALI and Hyperion images coincided
test plots of different types were assigned — agricultural
crops, arable land, natural vegetation, open soil, artificial
surfaces — 8 spectral classes total. All further measurements
and estimations were made within these test plots.
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Fig. 1. Natural color synthesized simultaneous
EO-1/ALI (a) and EO-1/Hyperion (b) stacked satellite
images, July 30, 2014, 30 m ground resolution

Results and discussion

Three well-known narrow-band spectral indices,
widely used for the vegetation state assessment and
which covering a wide range of spectrum — from 550 nm
(visible) to 1680 nm (SWIR) (Haboudane, Miller,
Tremblay, Zarco-Tejada & Dextraze, 2002; Herrmann,
Karnieli, Bonfil, Cohen & Alchanatis, 2010; Wang &
Wei, 2016) were selected for testing. These ones are the
transformed chlorophyll absorption in reflectance index
(TCARI)

p
TCARI = [0700 —Pe70 — 0,2 (P700 — Pss0) ﬂj (@)

Pe70
optimized soil-adjusted vegetation index (OSAVI)
OSAV] = 1,16 (Pgoo —Pé70) ’ @)
Pgoo +Pero +0,16

and the normalized difference nitrogen index (NDNI)

NDNI __Inpieg —INpisio 3)

INpyggo +INpPysig

Here p, denotes the spectral reflectance at A
wavelength.

First of all the significance of regressional
dependencies between narrow-bands reflectance and
wide-bands one was estimated. The following spectral
bands involved for TCARI, OSAVI and NDNI spectral
indices calculating (1)—(3) were selected:

Table 1. The ALI and Hyperion spectral bands, involved
for spectral indices calculation

Reference ALl spectral | Hyperion spectral

(A, nm) band (A, nm) band (A, nm)
550 4 (567) 20 (549)
670 5 (660) 32 (671)
700 6 (790) 35 (701)
800 7 (866) 45 (803)
1510 9 (1640) 137 (1518)
1680 10 (2226) 153 (1679)

The significance of linear regressions between ALI
and Hyperion spectral bands from Table 1 was expressed
by the corresponding coefficients of determination:
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Table 2. The ALI and Hyperion spectral bands linear
regression’s determination

ALl — Hyperion| ,_ 15 ,3516,35(745| 9137 | 10153
bands’ regression
Coefficient of | 4 o7 | 599 | 0.09 | 0.9 | 098 | 082
determination

immediately (this is the second method) are slightly
lower, especially for NDNI:

Table 3. The ALI and Hyperion spectral indices linear
regression’s determination

As follows from the Table 2, there is a quite good

ALl = Hyperion 1 -0 np) | 0savi | NDNI
lndlCeS regression
Coefficient of 0.75 0.96 0.44
determination

significance of regressional dependencies between ALI
and Hyperion spectral bands except the 700 nm
reference one, which affects the accuracy of the TCARI
index simulation.

The coefficients of determination for regressions

However, the overall accuracy of calculating the
vegetation indices by ALl  regression-restored
Hyperion’s spectral bands is worse than by the

. o regression between the indices directly:
between the ALI and Hyperion spectral indices g y
Table 4. The ALI-based Hyperion spectral indices restoration accuracy
ALl-based restored | ronpi | osavi | NDNI | TCARI | OSAVI | NDNI
Hyperion index
Restoration method by regression-restored bands by regression-based indices
MAE 1.32 0.27 0.26 0.11 0.03 0.05
RMSE 2.47 0.32 0.28 0.22 0.05 0.08

The restoration accuracy was estimated by test plots
of various classes in ALI and Hyperion images. The
mean absolute error (MAE) and the root mean square
error  (RMSE) of spectral indices were used to

characterize the accuracy of ones restoration. Significant
errors in the TCARI vegetation index restoration as it
seems caused by insufficient regression’s determination
for the 700 nm reference band.

In Fig. 2 the vegetation indices distributions are
displayed of Fig. 1 multispectral images, obtained by the
methods described above.

Fig. 2. The TCARI, OSAVI, and NDNI vegetation
indices distributions by Hyperion hyperspectral
image (a), by ALI-based regression-restored bands (b),
and by ALI — Hyperion indices’ regression (C)

Lastly, the restoration of narrow-band vegetation
indices based on the wide-band spectra classification and
translation demonstrates the best accuracy for the same
ALl image:

Table 5. The ALI-based Hyperion vegetation indices
restoration accuracy by spectra translation method

Al l-based restored | roap) | osavI | NDNI
Hyperion index

MAE 0.006 | 0045 | 0011

RMSE 0.008 | 0067 | 0014

In this case the major errors provide rather
considerable spacing between ALI and Hyperion SWIR
spectral band which affect the NDNI index only.

Conclusions

Thus, the experimental study on the restoration
accuracy of narrow-band spectral indices by wide-band
multispectral image was carried out. The best results are
provided by the previously patented method of spectra
translation, which is recommended for further practical
application. But this method implementation requires the
external spectral library engagement with land cover
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typical spectra over the study area. It is very desirable to
include high resolution (not worse than 1-2 nm) both
VNIR and SWIR precision spectra into such library to
provide the possibility of signals reconstruction in all
spectral bands of any imaging system.

Development and practicing of similar spectral
library should be the key focus of future research.
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TOYHICTb OLIHIOBAHH BY3bKOCMYT'OBUX CIIEKTPAJIBHUX IHAEKCIB 3A IIMPOKOCMYT'OBUMU JAHUMH

I[HCTAHLIIPTHOFO SOHAYBAHHS
C. A. CrankeBuu

AV “Haykosuii yenmp aepoxocmiunux docniodcens 3emni I'H HAH Yipainu”, eyn. Onecs Fonuapa, 55-b., Kuie 01054, Yxpaina
By3bKOCMYTOBi CHIEKTpasibHI iHAESKCH IOCUTh iIHQOPMATHBHI Ta BOXIIMBI B Pi3HUX 3aCTOCYBAHHSX IHCTAHIIMHOTO 30HAYBaHHS — IS
OLIIHIOBAaHHSI CTaHy POCIMHHOCTI, IPYHTiB, BOJOWM Ta IHIIMX YTBOPEHb 3eMHOI MOBEpXHi. [IpoTe sl MPSMOro BHMIipPIOBAHHS
BY3bKOCMYTOBHX CIEKTPaJbHUX IHACKCIB MOTPiOHE rimepcreKTpaibHe 3HIMAHHS. BiIbLIcTh ke CydacHHMX 0araTOCHEKTPalbHHX
ACPOKOCMIYHUX 3HIMAIBHUX CHCTEM € [IMPOKOCMYIOBUMH. BIAMOBIAHO, HEMOXIHMBO pO3paxyBaTH BY3bKOCMYIOBHI 1HJEKC
0e3rnocepesiHbO 32 LIMPOKOCMYTOBUMH JAHMMM JHCTAHLIMHOIO 30HIYBaHHA. Y CTATTI PO3MIIANAIOTHCS MiAXOOU 1O BiJHOBIICHHS
BY3bKOCMYTOBUX CIIEKTPAIbHUX 1HAEKCIB 3a LIMPOKOCMYTOBHMMH JaHUMH [MCTAHIIHHOrO 30HAYBAaHHS 3 BHKOPUCTAHHSAM
CTaTUCTHYHUX MOJIeJIel B3a€MO3B’3KiB BJIACHE BY3bKO- 1 IIMPOKOCMYTOBHX 1HIEKCIB, BXiHUX IIMPOKO- i By3bKOCMYTOBHX CUTHAJIB
y ONM3BKHX CIEKTPATIbHHUX JAiana30Hax, a TAaKOK TPAHCISLIl KBa3iOe3MepepBHUX CIEKTPIB BIAOUTTS 3eMHOI MOBEPXHI 3 HMIMPOKUX
Jiana3oHiB y BY3bKi.
BUKOHAHO €KCIIEPUMEHTAIBHE OLIHIOBAHHS TOYHOCTI BiJHOBJICHHS BY3bKOCMYTOBHX CHEKTPATbHHUX 1HICKCIB 3a IIUPOKOCMYTOBUMHU
6araTocreKTpaJbHUMU CYTYTHUKOBUMH 300pakeHHAMHU. Po3risianucst Tpy HailOiIbIn CKTaiHi By3bKOCMYTOBI CIIEKTPATIbHI 1HICKCH,
SIKi OXOIUTIOIOTH CHIEKTPaTbHUI Jiarna3oH BiJl BHIMMOIO JO0 KOPOTKOXBHJIBOBOrO iH(ppadepsoHoro, a came — TCARI (transformed
chlorophyll absorption in reflectance index), OSAVI (optimized soil-adjusted vegetation index) Ta NDNI (normalized difference
nitrogen index). Ilpoanai3oBaHO yci TpH 3rajjaHi METOAM BiJHOBJIEHHS BY3bKOCMYrOBUX CIIEKTPAIBHUX iHIAEKCIB. Hairipmmii
Pe3yNbTaT NPOJEMOHCTPOBAHO ISl PETPECIHO BiTHOBJICHHUX CUTHANIB B CIIEKTPAIBHUX Jlialla30Hax, a HallKpalluid pe3yaprar — JJIs
METOY TPAHCIALII ceKTpiB. ToMy METOI Ha OCHOBI TPAHCIISIIT CIIEKTPiB PEKOMEHIOBAHO ISl IPAKTHYHOTO 3aCTOCYBAHHSI.
Kuo4oBi cs10Ba: By3bKOCMYrOBHA CIIEKTPaJbHUI 1HAEKC, 0araToCreKTpaibHe 300pakeHHs, CIEKTPaJbHUHN Aiana3oH, perpeciiiHa
3aJICKHICTh, OLIHIOBAaHHS TOYHOCTI, 010;1i0TE€Ka CIIEKTPiB
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